

Hannah Lee Colorado School of Mines hannahlee@mines.edu

Problem Statement

- **Objective** to find an optimal team solution for an unordered set of independent motion tasks using a team of heterogeneous robots
- Motion Task task of moving one or more objects between locations in an environment
- Tasks can be completed in any order and have varying start and goal locations
- Robots may have spatial constraints that prevent them from traversing certain areas of an environment
- Task Conflict-Based Search (TCBS) is an adaptation of Conflict-Based Search to task space.
 - Conflict-Based Search is a multi-agent pathfinding algorithm

_							
Conflicts			Cost				
$T_1: \{R_1: 2-4, S_2 \rightarrow B\}$			14				
T_2 :	{R₃: 5-10, B-	→ E}					
Plan							
T 1:	$\begin{array}{ccc} 3 & - & 5 \\ R_2 \colon & S_1 \rightarrow & B \end{array}$	R3:	5 - 10 B → E	$\begin{array}{cccc} 10 & - & 13 \\ R_4 \colon & E \rightarrow & G_1 \end{array}$			
T2:	$\begin{array}{cccc} 2 & - & 14 \\ R_1 \colon & S_2 \rightarrow & G_2 \end{array}$						

Experiments

• Thirty trials were run on a team of four robots with varying numbers of randomly generated tasks

	Tasks				
	1	2	3		
Task Evaluation Time (s)	0.06	0.10	20.86		
Total Nodes	1.00	2.94	135.86		
Max Depth	1.00	1.52	5.86		

Optimal Multi-Agent Multi-Task Planning

James Motes

University of Illinois Urbana-Champaign jmotes2@illinois.edu

Task Conflict-Based Search (TCBS) Tree Method **Low-Level Search** Conflicts Cost **Search Space** – subtask starts/ends × T_1 : 12 **T**₂: agents × available intervals Plan Available Interval – time during which an 9 - 12 agent is available to complete a subtask **T**1: R4: $B \rightarrow F$ $E \rightarrow G_1$ 9 - 12 **T**₂: **Path** – a sequence of subtasks and agents **High-Level Search** • **TCBS Tree Node** – holds individual task Conflicts Cost Cost plans, a conflict map, and a team plan cost 13 T₁: 13 $T_2: \{R_1: 2-4, S_1 \rightarrow B\}$ **Task Conflict** – time intervals where an Plan Plan agent allocation conflict exists between tasks 10 - 13 9 - 12 - 10 4 - 9 2 – 4 R4: **T₁:** | R₁: R4: **R**₃: B → E B → E $S_1 \rightarrow B$ $E \rightarrow G_1$ $E \rightarrow G_1$ **Conflict Map** – a set of interval constraints 10 - 13 5 - 10 9 - 12 4 - 9 3 – 5 **T₂:** | R₂: R4: that are placed on individual tasks R4: **R**3: $S_2 \rightarrow B$ B → E $E \rightarrow G_2$ $E \rightarrow G_2$ Conflicts Cost Cost Conflicts T₁: 15 19 $T_1: \{R_3: 5-10, B \rightarrow E\}$ $T_2: \{R_1: 2-4, S_1 \rightarrow B\}$ $T_2: \{R_1: 2-4, S_1 \rightarrow B\}$ $\{R_3: 4-9, B \rightarrow E\}$ Plan Plan Plan 2 - 18 **T**₁: | R₁: $\mathsf{S}_1 \ \textbf{\rightarrow} \ \mathsf{G}_1$ 4 - 9 9 - 12 2 – 4 **T**₁: | R₁: **R**₃: R4: 5 - 10 3 – 5 $S_1 \rightarrow B$ B → E $E \rightarrow G_1$ **T**₂: R₂: **R**₃: B → E $S_2 \rightarrow B$ 4 - 15 $\begin{array}{rrrr} 9 & - & 12 \\ E & \rightarrow & G_2 \end{array}$ 4 – 9 **T₂:** | R₂: R4: $S_2 \rightarrow G_2$ B → E Conclusion

Nancy M. Amato University of Illinois Urbana-Champaign namato@illinois.edu

- TCBS produces optimal solutions
- Creating a team plan can be expensive because it is an NP-hard problem
 - number of tasks
- Acknowledgements Amato and James Motes.

State space grows exponentially with the

• I would like to give my thanks to the DREU program, Parasol Lab, and Dr. Nancy