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Abstract. In this paper, we present Task Conflict-Based Search (TCBS),
an optimal multi-agent multi-task planning algorithm. This is an adap-
tation of the multi-agent pathfinding algorithm Conflict-Based Search
(CBS) to task space. An individual task plan consists of a sequence of
agent assignments transitioning the system from a start state to a goal
state. The objective for multi-agent multi-task problems is to find plans
for all tasks while avoiding agent allocation conflicts. TCBS performs a
high-level search on a Conflict Tree (CT) where conflicts representing
overlapping assignments of agents between tasks are converted into task
constraints. Each node in the CT corresponds to a low-level search that
produces a multi-task plan with respect to the task constraints found in
the CT.

1 Introduction

Optimal multi-agent task allocation is shown to be an NP-hard problem (Turner).
The problem becomes increasingly more complex when there are heterogeneous
agents with different capabilities and constraints that are required to perform
various subtasks. The objective of multi-agent multi-task allocation is to find an
optimal team solution for an unordered set of independent motion tasks. Tasks
can be completed in any order, using any available agents. Creating an optimal
team solution is difficult because tasks are independently planned without taking
into consideration shared and limited resources.

Multi-agent multi-task planning is useful for many applications such as man-
ufacturing or unmanned aircraft vehicle coordination. The ability to allocate
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multiple tasks to multiple robots is useful in creating an undisturbed workflow
where tasks are completed simultaneously. An individual task can also be split
into subtasks where various robots sequentially take over ownership of the task
to complete it efficiently. To find an optimal team solution, efficient and effective
task and motion planning is required.

In this work, we present Task Conflict-Based Search (TCBS) to solve multi-
agent multi-task planning (MAMTP) problems. We adapt Conflict-Based Search
(CBS) [18], which was originally used to solve multi-agent path finding (MAPF)
problems, for MAMTP. A solution for MAPF problems consists of a set of
conflict-free paths for a given multi-agent team. Similarly, a solution for MAMTP
problems consists of a set of conflict-free plans for the set of tasks. TCBS consists
of two searches: a high-level search and a low-level search. Individual task plans
are generated through a low-level search while a high-level search identifies and
resolves conflicts between tasks.

The low-level search produces a task plan consisting of a sequence of indi-
vidual agent subtasks and interactions. To build the search space, we use the
combined roadmap from [13] to build an underlying roadmap for the multi-agent
team with interactions. We abstract this graph into a task graph consisting of
potential subtask start/end locations. This is integrated with agent availability
w.r.t. time to provide a graph representation of possible task plans.

CBS defines conflicts as agents being at the same location at the same time.
For MAMTP, conflicts represent overlapping assignment of agents between tasks.
A conflict therefore consists of an agent and two incompatible agent assignments.
These assignments are either directly overlapping in time or the assignment of
the agent prevents other tasks from utilizing that agent at a future time.

The high-level search identifies conflicts and then converts them into a pair
of constraints for the involved tasks. The existing solution is branched, and each
constraint is passed to one of the child nodes. Exploration of this tree leads to
resolutions of the individual task plan’s conflicts and an optimal solution.

We first describe the state-of-the-art in MAMTP and the original CBS ap-
proach. Then, we detail the adaptation of CBS to TCBS and both the low-level
and high-level search. Finally, we illustrate the effectiveness of the TCBS adap-
tation as well as adaptations of CBS variations to TCBS.

2 Related Work

2.1 Multi-Agent Task Planning

NP-Hard - Multi-agent task allocation has been extensively studied in the
past. Finding an optimal-solution is strongly NP-hard [4,23,24]. MAMTP prob-
lems can be translated into a version of the traveling salesman problem where
agents are represented by salesmen following paths instead of tours [4]. The key
difficulty of multi-level optimization problems is that optimizing multi-agent
allocation depends on solutions of a combinatorially explosive number of task
assignments and conflicts, each of which is NP-hard and computationally ex-
pensive [24]. Because multi-agent task allocation is an NP-hard problem, many



multi-agent multi-task planners provide sub-optimal solutions when the number
of tasks is large.

Optimal Planners Optimal multi-agent multi-task planners such as [11], [1],
[12], and [10], use varied algorithms to return optimal solutions. However, be-
cause multi-agent task allocation is computationally expensive, these optimal
planners are only reasonable and realistic to use for small numbers of tasks.
Much previous work also involves speeding up previously presented algorithms
so that they are more feasible to use in larger task problems. Optimal solutions
tend to be computed using Branch-and-Bound, an algorithm that searches the
state space of candidate solutions represented as a tree [8].

Sub-optimal Planners Sub-optimal multi-agent multi-task planners such as
[19], [21], and [9], trade optimality for reduced execution times. Sub-optimal
planners can typically find sub-optimal solutions very quickly. Sub-optimal plan-
ners focus on finding solutions efficiently while keeping the sub-optimal solution
cost as close to the optimal solution cost. Sub-optimal planners are typically
used for larger task problems due to significantly lower execution times.

Cooperation - Task planning requires task decomposition to break down an
abstract task into subtasks based on factors such as environment and heteroge-
neous robots [7]. Each subtask is executed by a single robot. One approach to
task decomposition is to use a centralized coordinator to decompose a task into
subtasks [2, 6, 20]. This is the method we employ.

There are two commonly used methods for multi-agent group coordination:
centralized and decentralized coordination. Centralized coordination requires all
team members to communicate with a centralized coordinator which assigns
tasks to each member within the team. Decentralized coordination requires team
members to use distributed algorithms to coordinate and assign tasks amongst
themselves [13]. In TCBS, we use a centralized coordinator for the task planning
portion.

Centralized coordination is advantageous in that only a single agent is used to
plan. This agent therefore plans using a global awareness of the system making
it often reliable [16]. However, the downside of using centralized coordination
is the necessity for constant and reliable communication channels between the
coordinator and the team members [13].

Decentralized coordination methods, such as [16] and [15], are more respon-
sive to uncertainty compared to centralized coordination. Using decentralized
coordination, agents can modify their responses as they explore their environ-
ment. The failure of a single agent does not necessarily compromise the integrity
of the entire system [13].



2.2 Multi-Robot Systems

Multi-robot systems (MRS) can be made of heterogeneous or homogeneous
robots. MRS often provide significant advantage over utilizing a single robot.
Heterogeneous systems have the ability to perform tasks that may require dif-
ferent hardware. Homogeneous systems can increase throughput by executing
tasks in parallel. However, MRS requires detailed planning in order for a system
to utilize each robot [13].

An important factor of MRS is the interaction of robots for the passing of
a task from one robot to another. This can be required if a specific task either
requires multiple disjoint robot types or if a task can be executed more efficiently
with multiple robots of the same capability. In this work, we use the previously
presented Interaction Template (IT) method for modeling multi-robot motion
planning problems with interactions [13]. ITs are small roadmaps that define
the interaction between two or more robots in an isolated setting. They are
generated with standard motion planning algorithms as a pre-processing step
and are tiled into the robots’ individual roadmaps at appropriate locations to
encode potential interactions. The ITs are then connected to form a combined
roadmap that encodes possible paths for the robot team which satisfy the motion
task.

2.3 Conflict-Based Search

Method - Conflict-Based Search is multi-agent pathfinding algorithm that
searches a conflict tree (CT) to find a solution consisting of conflict free paths for
all agents [18]. CT is a binary tree that contains a set of constraints, a solution,
and the total cost of the current solution. The set of constraints starts as an
empty set at the root of the CT. The child nodes in the CT inherits the con-
straints of its parent and adds a single new constraint for one agent. The solution
is a set of paths where a path is planned under a set of specific constraints.

When a node within the CT is processed, a low-level search is invoked that
returns the shortest path for each agent that is consistent with the given con-
straints. Once a path is found for each agent, the paths are then validated with
respect to the other agents. If all agents reach their goal without any conflicts,
the CT node is declared as a goal node and the current solution is returned.
However, if a conflict occurs within the CT node, the validation halts and the
node is declared a non-goal node.

A non-goal node is resolved by splitting the node into two children. Both
children inherit the set of constraints from the node. They are passed the first
conflict where two agents are occupying the same vertex at the same time. The
first child resolves the conflict by adding a constraint of the second agents vertex
and time to the first agent. Likewise, the second agent resolves the conflict by
adding a constraint of the first agents vertex and time to the second agent. Once
the CT search is completed, the minimum goal node holds the optimal path.
CBS guarantees optimality by examining both possibilities as a node is split
into two children.



Other Variations - There are many variations that have been studied to im-
prove CBS. Some variations, such as Satisfiability Modulo Theories (SMT) CBS
[22] and Meta-Agent Conflict-Based Search (MACBS) [17], improve the runtime
of CBS while maintaining optimality. SMT-CBS formulates CBS using Satisfia-
bility Modulo Theories to obtain optimal makespan solutions. MACBS couples
groups of agents into meta-agents if the number of internal conflicts between
agents exceeds a given bound.

Other variations trade optimality for dramatic improvements in runtime, such
as Greedy-CBS (GCBS) and Bounded Suboptimal CBS (BCBS) [3]. GCBS uses
the same framework as CBS but prefers to expand nodes that are more likely to
quickly produce a valid, but possibly suboptimal, solution. BCBS applies CBS
as a focal search.

Improved CBS (ICBS) is an improved version of the original CBS algorithm
where optimality is conserved [5]. ICBS consists of two improvements: the merge
and restart improvement, and the bypass improvement (BP).

MACBS involves merging agents into meta-agents [17]. This merge reduces
the size of the CT at the cost of increased computational effort by the low-
level solver (ICBS: Improved Conflict-based search). ICBS remedies this cost by
discarding the current CT when a merge decision has been made and restarting
the search from a new root node. The agents are merged into a meta-agent at
the beginning of the new search.

BP attempts to prevent a split action and bypass the conflict by modifying
the chosen path of one of the agents. A bypass to a path with respect to a conflict
and a CT node is valid if the new path does not include the current conflict, if
the cost of both paths are equivalent and if both paths are consistent with the
CT nodes constraints. For a given node, BP peeks at either immediate child of
the current node in the CT. If the path of a child is evaluated to include a helpful
bypass to the current node, then the childs path is adopted by the current node
without splitting the node and adding the child nodes to the CT. Although this
is the same number of computations as CBS, it can potentially save a significant
amount of search time and space due to the smaller CT size. We use BP to
significantly speed up the high-level search in TCBS.

3 Method

3.1 Low-Level Search

In the initial MAPF CBS algorithm, the goal is to find a set of collision-free
individual agent paths. These individual paths are computed with a low-level
path finding algorithm [18]. The authors use A* over a two dimension grid

x time search space in the original work for this. We map this concept to task
space by creating a search space of potential subtask start/end locations

x agents x available intervals. A path in this task space thus consists of
a sequence of subtasks with corresponding agent assignments.



For determining possible subtask start/end locations, we utilize the combined
roadmap concept from the Interaction Template (IT) method [13]. The IT
instances in this combined roadmap represent exchanges in task ownership and
thus the end of one subtask and the start of the next. We abstract this graph into
a task graph and use the IT locations as vertices and edges between these vertices
correspond to paths between them in the combined roadmap. The virtual start
and goal vertices used in the IT method are carried over to the task graph as
well. A plan across the task graph will produce a task plan for an individual
task without considering agent availability. This process can be seen in Figures
1 and 2.

Fig. 1. Example of an environment’s combined roadmap

We define an agent available interval as a contiguous period of time in which
the agent is not occupied performing a subtask or traveling to or from the sub-
task start or end location respectively. This is the equivalent to a space being
unoccupied by any agent for a contiguous period of time in the MAPF problem.
As the task graph corresponds to the underlying combined roadmap which ex-
ists in a continuous environment, the time intervals for subtasks on this graph
are also continuous. Mapping the original time dimension in the CBS work de-
signed for a discrete space would thus result in a massive search space w.r.t agent
availability. A continuous time extension to CBS proposed in [22] uses the Safe
Interval Path Planning technique [14] to condense the time dimension of the
search space. We adapt this concept to model agent availability with available
intervals.

Each vertex in the task graph corresponds to a robot-type as described in
[13]. The low-level search spaces consists of each of these locations by each avail-
able interval of all the agents of the corresponding type. The available intervals
at a vertex for an agent are found by taking in a set of constraints representing



Fig. 2. Edges in task graph correspond to paths in combined roadmap (ex: S1 → G1,
distance = 16, path in combined roadmap: S1 → A → H → I → G2 → F → G1)

existing subtask assignments of the agent and computing the time taken to travel
to, perform, and return from the subtask. A search over this space produces an
optimal individual task plan w.r.t. the existing assignment constraints of the
agents.

3.2 High-Level Search

The high-level search algorithm builds a CT tree to iteratively find an optimal
plan for a given MAMTP problem (Alg. 1). Nodes in the CT consist of multi-
agent multi-task solutions and individual task constraints. These constraints are
used to resolve conflicts between individual task plans.

Task conflicts consist of an agent, an occupied time interval, and start and
end locations. These are constraints placed on tasks to prevent conflicts in agent
allocation. A conflict occurs when an agent is assigned to multiple tasks during
the same time or when an agents assignment to multiple tasks is not feasible
due to time and location constraints. If a task occupies an agent for a given
time interval and a different task occupies the same agent during a disjoint time
interval, a conflict can still occur if the agent cannot reach the second task after
completing the first task.

We define an occupied interval as a contiguous period of time during which
an agent is completing a subtask. An occupied interval consists of a start and
end time, a start and end configuration or location, and an agent. In TCBS,
occupied intervals are used to define available and unavailable intervals. These
are adaptations of the safe and collision intervals used in [14]. Available intervals
are occupied intervals in which a tasks allocation of an agent does not conflict
with other allocations of the same agent by other tasks. An unavailable interval is
the opposite of an available interval. Unavailable intervals are occupied intervals



in which a tasks allocation of an agent conflicts with other allocations of the
same agent. Conflicts may arise due to temporal constraints. Available intervals
are used to create valid, optimal plans where the allocation of tasks to agents
is conflict-free. Unavailable intervals are used to create conflict maps that place
agent constraints on task planning.

The initial plan is constructed by having each task planned independently
of each other using the low-level search. This initial plan is placed as the root
of the Task Conflict Tree (TCT). After which, we begin looping and iterating
through the tree until the search is completed. Within the looping sequence, we
get the minimum node within the TCT and check each plan for task conflicts.

If a task conflict is found, it is added to a conflict map that places temporal
agent assignment constraints on future plans. For a given task conflict, its re-
spective tasks are then replanned and saved as child nodes of its parents. Thus,
if a task conflict occurs between task 1 and task 2, the parent plan is replanned
for task 1 in one of the child nodes and replanned for task 2 in the other child
node while all other task plans in the solution are held constant.

If a task conflict is not found within a given node, the node is marked as a
goal node and search along that branch is terminated. Once a goal node has been
found, search along non-goal nodes can be terminated before they become goal
nodes if and only if the solution cost of the non-goal node exceeds that of a goal
node. As constraints are placed on the nodes of the TCT, the solution cost can
only increase as the depth of the tree increases. Thus, once a non-goal node’s
cost exceeds that of a goal node’s cost, all potential plans along that branch
will not be the optimal solution. Once the search is completed, the minimum
cost goal node will hold the optimal solution. Figure 3 shows the TCT that was
generated from the combined roadmap (Fig. 1) and the low-level graph (Fig. 2).

TCBS can be used with either a sum of costs or makespan cost metric. Sum
of costs is the sum of each plan’s end time. Makespan is the maximum end time
found within a set of task plans. Using sum of costs will return the shortest
overall solution. Using makespan will return the shortest overall solution where
each task will be complete as quickly as possible. The cost metric can affect the
size of the TCT, but, if given enough time to complete its search, TCBS will
return an optimal solution.

3.3 Improved Task Conflict-Based Search

After an initial set of experiments, we decided that TCBS was too inefficient
to solve MAMTP problems. To remedy this, we applied BP [5] to TCBS to
create Improved Task Conflict-Based Search (ITCBS). As stated previously, BP
tries to prevent the splitting of parent nodes into child nodes by bypassing the
conflict by modifying the chosen plan of one of the tasks. ITCBS follows the
same algorithm as ICBS’s BP improvement.

When a conflict is encountered, ITCBS peeks at either immediate child of
the current node within the TCT. If the cost of both paths are equivalent and
consistent with the current node’s constraints, then the bypass is considered
valid. Given a valid bypass, the child’s path is adopted by the current node



Algorithm 1 Task Conflict-Based Search The high-level search takes in a
set of agents and unordered motion tasks and returns a team solution consisting
of valid plans for all the input tasks.

Input: set of tasks T , set of agents A
Output: final team solution Sf

Sf ← Ø // infinite solution cost
for all task t ∈ T do

S0 ← LowLevelSearch(t)
root.solution ← S0

root.cost ←Makespan(S0)
TCT tree ← Ø
tree.insert(root)
while tree not empty do

minNode ←tree.GetMinNode()
if minNode has no conflict then

if minNode.cost < Makespan(Sf ) then
Sf ← minNode.solution

else
if minNode.cost < Makespan(Sf ) then

C ← first conflict (ti,inti,tj ,intj ,ak)
for all task t ∈ C do

N ← new node
N.constraints←minNode.constraints + (ti,intj ,ak)
N.solution update with LowLevelSearch(ti)
N.cost←Makespan(N.solution)
tree.Insert(N)

return Sf



Fig. 3. Task Conflict Tree calculated from Figure 1

without splitting the node. Thus, the child nodes are not added to the TCT.
This requires the same number of computations as TCBS; however, due to the
smaller TCT size, the evaluation time becomes significantly lower as the number
of tasks increase due to the fewer number of parent to child splits.

4 Experiments

4.1 Experimental Setup

The TCBS algorithm was tested using a scenario that involved a team of four het-
erogeneous agents: three ground robots and one water robot. These agents solved
varying numbers of randomly generated tasks. The environment and starting lo-
cations of each agent was held constant throughout the experiments; however,
the start and goal locations for each trial’s tasks’ were randomly generated. We
ran a set of thirty trials using varying seeds to randomly generate these tasks
using a makespan cost metric.

The environment used, as seen in Figure1, is comprised of a land mass with
a single water mass in the center. There are three ground robots. Two of these
robots have start locations on the left-hand side of the environment. These loca-
tions are relatively close to each other, increasing the number of conflicts. The
third agent is on the far right of the environment. The ground robots can also
interact with the water robot at vertices B and E.

We ran these experiments using both TCBS and ITCBS. By using the same
seeds when running these search algorithms, we were able to provide the same
randomly generated tasks to each algorithm. This allowed us to compare ITCBS
to TCBS using the same set of task plans.



4.2 Results

When given random start and end locations for varying numbers of tasks, the size
of the TCT varies greatly depending on the number of tasks and the complexity
of the tasks. Given that there are four agents, when there are less than four tasks,
it is significantly easier to solve the MAMTP problem. However, once the number
of agents is equivalent to the number of tasks, the number of conflicts increases.
This makes both the tree size and evaluation time increase exponentially as the
number of tasks increases.

As seen in Tables 1 and 2, all metrics increase as the number of tasks ap-
proaches the number of agents. The implementation of ITCBS significantly im-
proves the TCT size and the evaluation time as the number of tasks increase.
We stopped running TCBS after five tasks due to the amount of time it took
to solve these MAMTP problems. When examining the ITCBS results (Table
2), the evaluation time for five tasks was significantly higher than for that of six
tasks. We suspect that this is due to a seed that produced a particularly difficult
set of task plans to solve. However, despite this, the improvement in both tree
size and evaluation time can be clearly seen between the two search algorithms.

Number
of Tasks

Total Nodes
Minimum
Node Depth

Maximum
Node Depth

Nodes
Explored

Evaluation
Time (s)

1
avg: 1.00 0.00 0.00 1.00 0.06
stdev: 0.00 0.00 0.00 0.00 0.01

2
avg: 2.83 0.83 0.83 2.8 0.10
stdev: 1.58 0.57 0.57 1.57 0.03

3
avg: 8.74 2.09 2.29 7.26 0.24
stdev: 11.43 1.44 1.74 9.02 0.21

4
avg: 107.03 4.74 6.91 90.54 3.96
stdev: 161.12 2.05 3.81 140.99 7.66

5
avg: 927.12 8.94 14.74 726.47 646.27
stdev: 1317.72 2.93 6.39 1064 1992.43

Table 1. TCBS Results using Four Agents

5 Conclusion

We have shown an optimal multi-agent task allocation algorithm for solving
multi-agent multi-task planning problems. This method uses the previous devel-
oped [18], used to solve multi-agent pathfinding problems, and applies it to task
space. As an NP-hard problem, the state space for multi-agent multi-task plan-
ning problems increases exponentially as the number of tasks increase. Due to
the inefficiency of TCBS, we implemented ITCBS from [5], which significantly
improved the evaluation time. Future work includes applying CBS variations to
task space and seeing when sub-optimal planners may be preferred over optimal
planners.
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Number
of Tasks

Total Nodes
Minimum
Node Depth

Maximum
Node Depth

Nodes
Explored

Evaluation
Time (s)

1
avg: 1.00 0.00 0.00 1.00 0.06
stdev: 0.00 0.00 0.00 0.00 0.01

2
avg: 2.09 0.74 0.74 1.91 0.10
stdev: 1.29 0.61 0.61 0.78 0.03

3
avg: 6.6 1.71 1.83 4.37 0.20
stdev: 9.12 1.53 1.64 4.64 0.17

4
avg: 77.49 4.34 5.97 40 2.64
stdev: 122.02 2.13 3.49 60.97 5.63

5
avg: 231.09 66.00 8.74 116.86 65.74
stdev: 496.64 2.97 4.99 248.27 340.67

6
avg: 77.49 4.34 5.97 40.00 2.65
stdev: 122.02 2.13 3.49 60.97 5.63

Table 2. ITCBS Results using Four Agents
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