
Regular Tree Algorithm Redux: The Atomic Case:1

DREU Final Report2

Soma Chaudhuri3

Iowa State University, USA4

chaudur@iastate.edu5

Reginald Frank6

Texas A&M University, USA7

reginaldfrank77@tamu.edu8

Jennifer L. Welch1
9

Texas A&M University, USA10

welch@cse.tamu.edu11

Abstract12

We consider the problem of simulating a k-valued atomic register in a wait-free manner using13

binary atomic registers as building blocks, for any k > 2. In this note we prove that the tree14

algorithm of Chaudhuri and Welch [1], which was originally proposed to simulate a k-valued15

regular register out of binary regular registers, simulates an atomic register when the binary16

registers are atomic. Our tree algorithm uses k − 1 binary registers and each operation on the17

simulated register performs dlog2 ke operations on the binary registers. When the number of18

readers of the simulated register is ω
(

k
log k

)
, this is the most space-efficient algorithm known for19

the problem. Furthermore we prove that the said algorithm’s worst case logical Write use the20

fewest amount of physical writes possible.21

2012 ACM Subject Classification Theory of computation → Distributed algorithms22

Keywords and phrases Interprocess communication, Shared registers23

1 Introduction24

A register is a fundamental shared object which can either be read from or written to. Our25

work focuses on registers with a single writer, but an arbitrary number of readers. Different26

registers may have different properties such as regularity or atomicity. Regularity ensures27

that if a read of the register is concurrent with a write, then the read will return either the28

previous (if no preceding writes, initial) value of the register or the value of the concurrent29

write; otherwise the read will return the most recent value held/written to the register.30

Atomicity is stronger than regularity as it provides a definite order to the operations in an31

execution, meaning the operations are linearizable [4]. Furthermore it is accepted [3] that32

the only distinction between regular and atomic executions is that regular executions allow33

for new−old inversions. These inversions occur when one or more read returns an old value,34

the value which was written just before the current write after the current write has been35

read. Reads of a regular register are permitted to return old values allowing for new−old36

inversions, however atomicity forbids this.37

Several algorithms have been created to make use of a number of binary registers for the38

purpose of constructing k-valued registers, a register which can hold k unique values where39

k ∈ Z+. In particular, the tree algorithm created by Chaudhuri and Welch in [1] uses k − 140

1 Supported in part by NSF grant 1526725.

mailto:chaudur@iastate.edu
mailto:reginaldfrank77@tamu.edu
mailto:welch@cse.tamu.edu

23:2 Regular Tree Algorithm Redux: The Atomic Case

binary regular registers to construct a k-valued regular register. The motive of this document41

is to show that this algorithm can directly be extended to use atomic binary registers to42

create an atomic k-valued register. This will be done by showing that “new-old inversions”43

are not possible in the resulting construction.44

2 Tree Algorithm45

The original tree algorithm presented in [1] goes as follows. For a value set V of size k,46

associate a binary register with each internal node of a binary tree with k leaves and label47

the leaves with the elements of V . A Read operation reads the registers corresponding to a48

path from the root down to a leaf. At each level, if the current register holds 0 (resp., 1),49

then the next register read is the left (resp., right) child. If the last register in the path50

holds 0 (resp., 1), then return the value labeling the left (resp., right) child of the tree node51

corresponding to the register. A Write(v) operation writes the registers corresponding to52

the path from the leaf labeled v up to the root. At each level, if the previous tree node is53

the left (resp., right) child of the current tree node, then 0 (resp., 1) is written to the register54

corresponding to the current tree node. The tree algorithm uses k − 1 binary registers. If55

the binary tree is complete, then the number of steps in each operation is at most dlog2 ke.56

It is shown in [1] that if the binary registers are regular, then the k-valued register57

simulated by the tree algorithm is also regular. We will show that if the binary registers are58

atomic, then the tree algorithm simulates an atomic register.59

To simplify the correctness proof, we provide a new way of describing the tree algorithm,60

called RTA(V) for Recursive Tree Algorithm, where V is the finite set of ordered values to be61

stored in the register. For now, assume that |V | = k is a power of 2. (Later we will discuss62

how to relax this assumption.)63

For the base case, when |V | = 2, RTA(V) uses a single binary2 atomic register x, the64

Read algorithm consists solely of reading x and returning the value obtained, and the65

Write(v) algorithm consists solely of writing v to x.66

Now suppose |V | > 2. RTA(V) can be viewed as a binary tree with two levels. The root67

of the tree is a binary atomic register, root, with two children. The left child, denoted as A,68

and the right child, denoted as B, are both k
2 -valued atomic registers, where A’s value set69

consists of the k
2 smallest values in V and B’s value set consists of the k

2 largest values in V .70

The Read algorithm first reads the root; if 0 (resp., 1) is returned, then it reads A (resp.,71

B) and returns the value obtained. Pseudocode is in Algorithm 1. To Write v when v is72

less than the median of V , the algorithm first writes v to A and then writes 0 to the root;73

when v is greater than the median of V , it first writes v to B and then writes 1 to the root.74

Pseudocode is in Algorithm 2.75

2 The size of the value set is 2, but the values are not necessarily 0 and 1.

S. Chaudhuri, R. Frank, and J. L. Welch 23:3

Algorithm 1 RTA Read, |V | > 2
1: procedure Read()
2: rootVal← read (root)
3: if rootVal = 0 then
4: Return read(A)
5: else
6: Return read(B)

Algorithm 2 RTA Write, |V | > 2
1: procedure Write(v)
2: if v < median(V) then
3: write(v) to A
4: write(0) to root
5: else
6: write(v) to B
7: write(1) to root
8: Ack

76

77

To simulate the k-valued register from binary registers, use RTA recursively in this78

construction. That is, let A = RTA(V1), where V1 consists of the k
2 smallest elements of V79

and let B = RTA(V2), where V2 consists of the k
2 largest elements of V .80

When the recursion is unrolled, the resulting algorithm is equivalent to the tree algorithm81

in [1]. Informally the reason is that all key features of the tree algorithm, such as Writes82

progressing from leaf to root, and Reads progressing from root to leaf, are preserved.83

3 Analysis84

In this section, we show that RTA(V) simulates an atomic register.85

For an execution of an atomic register x, we say that read r of x reads from a write w of86

x if w is the latest write that precedes r in the linearization of the operations on x.87

I Theorem 1. RTA(V) implements an atomic register when |V | = k is a power of 2.88

Proof. We use induction on the size of V to show that RTA(V) is atomic.89

Base Case: |V | = 2. RTA(V) is simply a binary atomic register and the result follows.90

Inductive Step: |V | = 2m, where m > 1. By the inductive hypothesis, the building block91

registers A and B are atomic since each of them is an instantiation of RTA for a value set of92

size 2m−1.93

By a result of Lamport [4], to show that an execution is atomic, it is sufficient to94

demonstrate the existence of a function ρ from the set of Reads in the execution to the set95

of Writes in the execution such that:96

1. For every Read R, ρ(R) either overlaps R or is the latest Write that finishes before R97

begins.98

2. For all Reads R1 and R2 such that R1 finishes before R2 begins, ρ(R1) either equals or99

precedes ρ(R2).100

The first condition ensures regularity and the second condition rules out “new-old” inversions.101

For the tree algorithm, we define the function ρ as follows. For Read R, let ρ(R) be the102

Write W such that R’s leaf read (of A or B) reads from W ’s leaf write. Note that the103

value written to the leaf is the same as the value read from that leaf, and thus the value104

returned by R is the same as the value written by W .105

It is straightforward to see that ρ satisfies condition (1). Suppose for contradiction that106

ρ does not satisfy condition (2). Then there are two Reads, R1(v1) and R2(v2), such that107

R1 finishes before R2 begins but ρ(R2) = W2(v2) finishes before ρ(R1) = W1(v1) begins.108

Case 1: R1 and R2 read the same value from root, without loss of generality, say 0. This109

means they both read leaf A, resulting in the following precedence relations (denoted →);110

see Figure 1.111

23:4 Regular Tree Algorithm Redux: The Atomic Case

Figure 1 Precedence relations for Case 1

read(0) from root in R1 → read(v1) from A in R1 → read(0) from root in R2 → read(v2)112

from A in R2113

write(v2) to A in W2 → write(0) to root in W2 → write(v1) to A in W1 → write(0) to114

root in W1115

write(v1) to A in W1 → read(v1) from A in R1116

write(v2) to A in W2 → read(v2) from A in R2117

Since W2’s write to A is followed by W1’s write to A, which is followed by R1’s read of A,118

which is followed by R2’s read of A, it is not possible for ρ(R2) to be W2, a contradiction.119

Case 2: R1 and R2 read different values from root; without loss of generality suppose R1120

reads 0 and thus reads leaf A, while R2 reads 1 and thus reads leaf B.121

We now have the following precedence relations:122

read(0) from root in R1 → read(v1) from A in R1 → read(1) from root in R2 → read(v2)123

from B in R2124

write(v2) to B in W2 → write(1) to root in W2 → write(v1) to A in W1 → write(0) to125

root in W1126

write(v1) to A in W1 → read(v1) from A in R1127

write(v2) to B in W2 → read(v2) from B in R2128

One important observation is that if a Write writes 0 (resp., 1) to root then it has129

previously written to leaf A (resp., B).130

Case 2.1: R1’s read of root reads from W1’s write to root or a later one. See Figure 2.131

Then R2’s read of root reads from a write to root in W1 or a later Write. By the observation,132

R2’s read of B reads from the write to B in W1 or a later Write, so ρ(R2) cannot be W2, a133

contradiction.134

Figure 2 Precedence relations for Case 2.1

Case 2.2: R1’s read of root reads from the write to root in a Write earlier than W1. It135

cannot be from W2, since W2 writes a different value to root than what R1 reads. It cannot136

be from a Write that precedes W2, since earlier writes to root are followed by W2’s. So it137

must be from some Write W3 that is in between W2 and W1. See Figure 3. But then W2’s138

write to root precedes W3’s write to root, which precedes R1’s read of root, which precedes139

R2’s read of root. Thus R2’s read of root reads from a write to root in some Write W4 that140

S. Chaudhuri, R. Frank, and J. L. Welch 23:5

follows W3. By the observation, W4 writes B before it writes root, and thus π(R2) cannot141

be W2, a contradiction.142

Figure 3 Precedence relations for Case 2.2

Thus ρ satisfies condition 2 and hence RTA(V) is atomic. J143

As noted in [1] for the original tree algorithm, RTA(V) uses k − 1 binary registers, where144

|V | = k, and the number of steps per operation is log2 k.145

4 Extensions146

Because RTA is equivalent to the Tree Algorithm with atomic binary registers the same147

method can be used to allow for a value of k which is not a power of 2. The general148

intuition for this is that each implementation where k is not a power of two, RTA provides149

a tree which is equivalent to a tree where k is the following power of 2 with a number150

of nodes removed. The restricted nodes has an equivalent purpose as restricting Writes151

to only use values between 0 and k; it follows that the all the possible executions of this152

restricted implementation are a subset of the set of possible executions when Writes are153

not restricted. Because the unrestricted set of executions are all linearizable, it follows then154

that the restricted set is also linearizable showing that the original restriction on k is not155

necessary to implement an atomic RTA algorithm.156

This shows that RTA can correctly implement an atomic register for any sized k, allowing157

A and B to be created using RTA meaning all implementations of RTA can be constructed158

solely using binary atomic registers.159

5 Lower Bound160

In this section we give several facts about algorithms where all logical Reads use ≤ log2(k)161

physical reads.162

I Theorem 2. For any wait-free algorithm A that simulates a k-valued safe register using163

binary atomic registers, if the Read algorithm uses at most log2(k) reads in the worst case,164

then the Write algorithm uses at least log2(k) writes in the worst case.165

Proof. Consider the following set S of executions of A: σi = Write(vi) αi Ack Read1 βi166

Return(wi) | only the WP takes steps in αi and only RP1 takes steps in βi, 0 ≤ i < k.167

Note that wi must equal vi to satisfy safety.168

Now construct a decision tree of RP1’s behavior in the executions in S. The root of the169

decision tree corresponds to the first register that RP1 reads, this register is the same for all170

executions in S as RP1 always begins in the same state. Now depending on the first value171

read, RP1 does some amount of non-read actions then does another read of some register.172

Because the root only can store two values there are only two registers RP1 can decide to173

read from causing the root to have two children. Continue to build the tree like this. Add174

leaves to indicate which value RP1 will Return.175

23:6 Regular Tree Algorithm Redux: The Atomic Case

I Lemma 3. The decision tree is a complete binary tree with exactly k leaves in which every176

leaf is at depth log2(k) and the path from the root to the leaf labeled vi corresponds to βi ∈ σi.177

178

Proof. Note that there must be at least k leaves in the decision tree, as each value in V is179

returned in one of the executions in S. Since the decision tree is binary, basic facts from180

graph theory imply that each leaf must be at depth log2(k), allowing exactly k leaves and181

each root-to-leaf path must correspond to a different execution in S. J182

I Lemma 4. None of the Reads in an execution in S reads the same register more than183

once.184

Proof. Suppose in contradiction the Read in σi reads some number of registers more than185

once, for some i. Let x be the first register that RP1 reads twice, say the a-th read and the186

b-th read, with log2(k) ≥ b > a. Consider the node in the decision tree for the b-th read187

in the path for σi. This node must have two children since the decision tree is complete.188

Consider a root-to-leaf path π in the decision tree that forks off from the path corresponding189

to σi at this node. By Lemma 1, there is a one-to-one correspondence between root-to-leaf190

paths in the decision tree and the set of executions and so π corresponds to σj in S, for some191

j 6= i.192

However, it is not possible for σi and σj to read different values from x at the b-th read193

since the only process that is taking steps during the Reads is RP1: even if RP1 writes to x194

during the Read, it will write the same value in σi as in σj , as nothing differs in those two195

executions until reaching the b-th read. J196

Now we can finish the proof of the theorem. Let x1 be the first register read in the Read197

of each execution in S. Note that in half of the elements of S, the value read from x1 in198

the Read must be different from the initial value of x1, in order to be able to reach all the199

leaves on that half of the decision tree. In other words, the WRITE writes to x1 in half200

the executions in S. Let S1 be the subset of S consisting of the executions in which the201

Write writes x1; note that |S1| = k
2 . Now let x2 be the register corresponding to the root202

of subtree in which x1 was written. A similar argument shows that in half the executions203

in S1, the value read from x2 in the Read must be different from the initial value of x2.204

Let S2 be the subset of S1 consisting of the executions in which the Write writes to x2;205

note that |S2| = k
22 . Continuing this way we obtain Slog2k, which is of size 1, in which the206

Write writes to x1, x2, ..., xlog2x. By Lemma 2, each of these registers is distinct and thus207

the WRITE writes to at least log2(k) registers. J208

6 Conclusion209

This result directly improves on the Tree-Algorithm found in [2], however it does not improve210

their combined implementation which uses the un-optimal tree algorithm. And in conclusion211

the tree algorithm uses an optimal number steps in both Reads and Writes when all Reads212

use ≤ log2(k) physical reads.213

References214

1 Soma Chaudhuri and Jennifer L. Welch. Bounds on the costs of multivalued register im-215

plementations. SIAM J. Comput., 23(2):335–354, 1994.216

S. Chaudhuri, R. Frank, and J. L. Welch 23:7

2 Tian Ze Chen and Yuanhao Wei. Step optimal implementations of large single-writer217

registers. In 20th International Conference on Principles of Distributed Systems (OPODIS),218

pages 32:1–32:16, 2016.219

3 Rachid Guerraoui and Petr Kuznetsov. Concurrent Computing, January 21, 2018 (accessed220

July 4, 2018). https://perso.telecom-paristech.fr/kuznetso/MITRO207-2018/book-ln.pdf.221

4 Leslie Lamport. On interprocess communication. Part II: Algorithms. Distributed Comput-222

ing, 1(2):86–101, 1986.223

	Introduction
	Tree Algorithm
	Analysis
	Extensions
	Lower Bound
	Conclusion

