
Quality of Genetic Algorithm in the Cloud

Lee Curry

Department of Computer Science,

University of Texas at El Paso,

El Paso, Texas 79968

Email: lacurry2@miners.utep.edu

Sekou L. Remy

School of Computing,

Clemson University,

Clemson, South Carolina 29634

Email: sremy@clemson.edu

Abstract—Genetic Algorithms are a form of artificial in-
telligence used in adaptive techniques and solution searching.
Similar to the notion of natural selection in which the ’most
fit’ of the population have a greater influence on the following
population, genetic algorithms use the most fit of a population to
construct the next generation. In terms of use, genetic algorithms
are simpler to implement and are one of the more efficient
algorithms for complex systems with multiple factors at play.
When implementing Genetic algorithms the effects of parameter
usage can be unknown when taking the system as a whole
into consideration, such a population size, termination criteria,
generation length, introduction rate and so on. The focus of this
study is to determine if there is a difference in the quality of
outcome of a genetic algorithm on different network topologies.

I. INTRODUCTION

Genetic algorithms where first created and developed by
John Holland [1]. At the time, his goal was to study the inner
workings of adaptation and to find utilization in computers
systems. With such a backing, genetic algorithms can be used
to quickly and effectively find a solution to any problem with
a high complexity. The uses for genetic algorithms have been
studied and as a result can be seen in many applications from
robotic cloud computing, and searching to optimization [2]
[3]. In many situations a set of known solutions would not
be feasible to have and store for a later usage with complex
systems. In some cases the solution is entirely different from
what would be expected, negating the usefulness of a database
of working solutions. Genetic algorithms provide an alleviation
to this predicament.

As with natural adaption, in which many factors come
into play, genetic algorithms have varied parameters that have
different effects. Such factors can be said to be the environment
in which the system is in, the size of the population, the rate
of growth, all of which have a major impact on the outcome.
Papers and studies have also been completed with the usage
of genetic algorithm parameters as its strong point. [4].

In recent years a new technology has risen to a high
standard of use. The cloud, as defined by the National Institute
for Science and Technology , ” is a model for enabling
ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources” [5]. Cloud based
usage gives a consumer an opportunity to have processing
power, storage, use of networks and other computational
resources without having to set up, up-keep and support any
local machinery [6].

One foreseeable drawback from using cloud based re-
sources is that the underlying network would have a great po-

tential to apply interference across the network. This interfer-
ence, or noise, has the potential to be harmful to computation
or result in unknown outcomes. Even with the knowledge that
cloud use can result in efficient use of resources, it is necessary
to also know how the cloud can affect the final outcomes of
a program, whether the program is time sensitive, complex or
neither.

In the reference of this paper a genetic algorithm will be
used to determine if the topology of network in which the
genetic algorithm is ran will affect the final outcome. The
scope of this paper was designed as such that it can be fluidly
applied to broader real-time systems.

II. BACKGROUND

Modeled after the process described the evolutionary the-
ory, genetic algorithm attempt to simulate the growth and
change of a set of individuals such that a set of better
individuals is produced as an outcome. [7] As with any idea
and concept genetic algorithm have many different implemen-
tations and structural discrepancies, but at its core all genetic
algorithms have the same basic structure. This structure can
be broken down into four parts: population sourcing, fitness
evaluation, selection, and genetic operations. The following
shows and example of a generic genetic algorithm.

I n i t i a l i z e p o p u l a t i o n
w h i l e : t e r m i n a t i o n c r i t e r i a n o t meet
E v a l u a t e p o p u l a t i o n
E l i t i s m
Reco m b in a t io n
Mu ta t io n
I n t r o d u c t i o n

A. Population sourcing

Population sourcing is the method in which a new indi-
vidual is selected, or made, to be used in the population. An
individual is said to be a vector containing data, this data is
used to in the fitness evaluation. Depending on the subject
at hand an individual could be constructed using a variety of
data[8]. In Holland’s original algorithm, a binary vector was
to be used. [9] An assortment of 1’s and 0’s would make up
the entirety of an individual’s genes. In modern times strings,
integers, symbols or any other quantifiable data type could be
used.

The process of constructing a new individual could be done
entirely random, with a randomization that is suited to meet



Fig. 1. an example of a ball and plate simulation

a particular standard, or from a file that is constructed for
the use of the algorithm.In any case a variety is most used, a
generation of individuals that are similar would not be allowed
to grow as well as a generation with different individuals.

B. Fitness evaluation

Fitness evaluation is the part of the algorithm that is entirely
unique to the situation that calls for it. Albeit one standard for
an algorithm such as genetic algorithm is a test which involve
an implementations of a genetic algorithms ability to have a
ball roll on a plate in a specified pattern , or for a given amount
of time. In the case of this study the ball and plate will be
simulated, but a physical construction can be used as well.
It is important to know that differences in testing result in
different outcomes.

In general, an individual is passed through a deterministic
test and its fitness score is given. Typically, an individual will
have a fitness that can be said to be
F (x) = y + α
With α used to denote the amount of noise a system has. This
score is used as a factor in the selection for the next population.

C. Population Selection

Population selection is the process in determining what
individuals of a population will be chosen to construct the next
population. Such as is the case in a natural environment, when
one species becomes so dominant to the point of total control,
stagnation occurs resulting in the populations swift downfall.
To combat this, not all the individuals in the population are
’fit’. In mimicking this property a genetic algorithm has a ratio
of elite individuals, fit individuals and unfit individuals.

The individuals that are elite are used to ensure that
the evolution does not fall into degradation. With very good
individuals ever present, and used for construction of the next
population, a declining generation fitness is deterred.

The fit individuals are used to exploit the possibilities of
a what good individual can be. It might seem fortuitous to
exploit the possibilities of a good individual, but think of a
plant with fruit. The fruit my complete the task, but a slight
tweak in flavor could be even better for the plant. So to a slight
tweak could result in a greater fitness.

The individuals that are unfit are used to expand definition
of what it means to be a good individual. Think of two
creatures, one with wings and another with webbed limbs.
Surly the winged creature is best at flying but if the task was to
travel the fastest in any medium, the webbed limbed creature
could be better suited for speed in a liquid medium. So such
is the use of an unfit percentage in the population.

D. Genetic operations

Genetic operations are methods in which individuals, either
in a group or alone, are altered [10]. Two of the most popular
methods are recombination and mutation.Though many other
exist, these two will be explained in detail .

Mutation is the act of changing one aspect of an individ-
ual’s genes. Recombination comes in many flavors, two of
which are single point cross over and double point crossover.
Single point cross over is the act of taking two individuals
and switching every gene after some point in the ’genetic
makeup’, i.e. the vector. Double point cross over is the act
of taking two individuals and switching the values of the
every gene in the ’genetic makeup’ up to some point. Both
of these recombination techniques result could result in two
new individuals in the next population. This implementation
will use the technique of a double point cross over.

Elitism is this reference is seen as the individuals with the
highest fitness being saved to the next generation with out any
change to the individuals genes. Introduction can be seen as
new organisms being added into the environment.

III. METHODOLOGY

The genetic algorithm was developed in a Java environ-
ment. The program, as a whole, was developed in three parts.
A separate program was developed and was used as the ball
and plate evaluation. The final program was used to actually
simulate a ball and plate. The GA was evolved over 50
generations with each generation having a population size of
40. Earlier run of the GA found that .1 mutation rate resulted
in the highest overall final fitness in this implementation. With
this knowledge .1 and .15 was used as mutation rates, .1
depicting optimal and .15 depicting suboptimal parameters.
The process that was used was repeated using three different
topologies: local machines, localized cloud, and cloud.

A. The System

As stated, the system for this experiment, the ball and plate,
is used. The ball and plate system is a dynamic set with an
equilibrium point that is unstable. An individuals genes are
used to control the plate to facilitate the movement of the



ball on the plate to move in a square pattern. The genetic
algorithm is being used to optimize the parameters for the ball
and plate, represented by an individual’s genes. Due to the fact
that each individual is independent of the other, the evaluation
of a generation can be parallelized across multiple threads.

B. The Evaluation

The evaluation was done by calculating the error in the
system. If the ball would not complete a remote trajectory that
of a square, the error would be quite high, resulting in a low
fitness. So to if the error was low, a high fitness would be
returned.

C. The Local Run

The genetic algorithm system was first ran on a local ma-
chine network, housed inside the computer science department
at Clemson University. The System, named Joey, has Ubuntu
as an operating system, linked to a network of 27 independent
machines. The genetic algorithm, GA for short, was ran on
one Joey. The ball and plate evaluation, eval for short, was ran
on a different Joey then that of the ball and plate simulation,
ball-plate, and the GA.

D. The Localized Cloud

In the localized cloud set, the GA and the eval was ran on
different Joeys. There was no difference in topology between
these two programs. The only difference in this set was that
the ball-plate program was on a different network, connected
via cloud. The machine that the ball-plate program was ran on
was still in Clemson area, but not physically at the university.
This machine was connected to a network similar to that of
the Cloud set, but stationed in the Clemson area.

E. The Cloud

The Cloud set, the GA and the eval was ran on different
Joeys also. The main difference was that the ball-plate program
was now run via cloud. The machine that physically housed
the ball-plate program was in Utah. The difference in location
was 2727.8 kilometers (1694.97 miles).

IV. RESULTS

The genetic algorithm that was implemented used a double
point cross over type of recombination. After each set of runs
the data was plotted in two different box plots. One represents
the fitness of each generation as a whole, the second is the
best top six individuals of the first generation. Part of the
implementation was such that all runs had the same initial
population, therefore the top six of the first generation is the
same individuals in all the top six individual charts.

A. The Local Run

This implementation of a genetic algorithm converged to
a final fitness around generation 15. As Fig 2 shows, after
generation 15 not much change occurs. The down skew of the
plot implies that exploration is still being used, but at the mean
number of good individuals does not increase, suggesting that
the system is at, or near, its peak performance.

Fig. 2. Ball-plate ran on closed in-house network

B. The Localized Cloud

Comparing the results from this run to those of the local
run, a slight shift is seen. This shift is most notable in the
curvature of the mean fitnesss. Notice that the curve of Fig 3 is
much more concise, while the curve of Fig 2 is more sporadic.
Fig 3 shows that the GA converged slightly faster than the local
run, but this is marginal. Other than these observations the data
of these two run has no statistical difference.

C. The Remote Cloud

Looking at Fig 4 a clear difference can be seen. None of the
mean fitnesss are above 2000, while nearly all the fitnesss for
each generations after generation 4 on the local and localized
run are above about 5000. This though is to be expected.
Compared to the local runs there is a large number of outliers,
this suggest that there is a large number of relatively higher
individual fitnesss; the fact that the space between the first
and third quartile are so close means that the number of good
individuals was out weighted by the number of bad.

D. The Top Six Individuals

From Fig 5 to Fig 6, there is no statistical difference
in the performance of the top six individuals. The skew of
the individuals fitness changes, but the location of the mean
fitness for that individual does not really move drastically.
This observation suggests that running a genetic algorithm
on a local machine, as opposed to a localized cloud has no
statistical difference. On the other hand looking at Fig 7, a
clear difference is seen. The chart for Fig 7 is scaled down so
that the largest value is 1000, if not for this little would be
seen. With Fig 7 representing the best six individuals from the
first generation tested with the Remote Cloud, a clear trend
can be witnessed. All the top six individual charts show that
the six individual, which is the best individual has a statistical
difference no matter where it is ran.

E. Final Outcome

Fig 8 depicts three individuals with the highest fitness of
each topology ran on the in-house network 21 times each.



Fig. 3. Ball-plate ran in localized Cloud

Fig. 4. Ball-plate ran in Remote Cloud

The chart shows that when the genetic is ran on an in-house
network, the results have no statistical difference than when
the ball-plate is ran on a localized Cloud. Both topologies are
comparable to each other in the sense of near equivalent high
fitness’s. The main difference comes when comparing either in-
house network or localized Cloud to the Remote Cloud usage.
There is a clear statistical difference between Remote Cloud
as opposed to the other topologies. Usage of a Remote Cloud
results in a drastic reduction of fitness. The best performing
individuals that came from the Remote Cloud, when ran on
the in-house network, performed less then a tenth as well as
those that resulting from the other topologies.

V. CONCLUSION

The final results suggest that using a Localized Cloud
to test the individuals will have no statistical impact on the
performance of a Genetic Algorithm. Using a Remote Cloud
would result in worse performance then is possible. Given
the data from the top six individual charts, a good individual
will still be good and another topology, but the distance of

Fig. 5. Top Six Individuals of Generation 1. Ball-plate Ran on closed in-house
network

Fig. 6. Top Six Individuals of Generation 1. Ball-plate Ran in Localized
Cloud

the evaluation program from the fitness test seems to have
influence on the quality. These finding suggest that utilizing
a Local Cloud will yield comparable results to using an
in-house network when optimizing network controllers and
running the evaluation program close to the program that
test the individuals will produce higher quality outcomes. The
consequences of these comparable results will no doubt shine
light on the scalable and elasticity that Cloud usage has to
offer, pushing forth growth in this field.

REFERENCES

[1] M. Mitchell and S. Forrest, “Genetic algorithms and artificial life,”
Artificial Life, vol. 1, no. 3, pp. 267–289, 1994.

[2] K. Kamei, S. Nishio, N. Hagita, and M. Sato, “Cloud networked
robotics,” Network, IEEE, vol. 26, no. 3, pp. 28–34, 2012.

[3] Y.-S. Zhou and L.-Y. Lai, “Optimal design for fuzzy controllers by
genetic algorithms,” in Industrial Automation and Control: Emerging

Technologies, 1995., International IEEE/IAS Conference on. IEEE,
1995, pp. 429–435.



1 2 3 4 5 6
0

200

400

600

800

1000

Fi
tn
e
ss

Remote Cloud Based Top Six Individuals

Fig. 7. Top Six Individuals of Generation 1. Ball-plate Ran in Remote Cloud

In-House Localized Cloud Remote Cloud
Topologies

0

2000

4000

6000

8000

10000

12000

14000

16000

F
itn

es
s

Top Individuals of Topologies

Fig. 8. top three individuals of each topology

[4] R. L. Haupt, “Genetic algorithm applications for phased arrays,” in
ACES, vol. 21, no. 3, 2006.

[5] P. Mell and T. Grance, “The nist definition of cloud computing,”
National Institute of Standards and Technology, vol. 53, no. 6, p. 50,
2009.

[6] S. Kaur and A. Verma, “An efficient approach to genetic algorithm
for task scheduling in cloud computing environment,” International

Journal of Information Technology and Computer Science (IJITCS),
vol. 4, no. 10, p. 74, 2012.

[7] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine learning, vol. 3, no. 2, pp. 95–99, 1988.

[8] C. Wells, C. Lusena, and J. Goldsmith, “Genetic algorithms for approx-
imating solutions to pomdps,” Citeseer, Tech. Rep., 1999.

[9] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine learning, vol. 3, no. 2, pp. 95–99, 1988.

[10] K. Vekaria and C. Clack, “Selective crossover in genetic algorithms:
An empirical study,” in Parallel Problem Solving from NaturePPSN V.
Springer, 1998, pp. 438–447.


