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What are
“Semantic Nets?”

- A.k.a. “Ontologies™
- Formal naming and definition of
types, properties and
relationships in a domain of
knowledge.



Course_ID

Entity

subclassOf

Person

subclassOf subclassOf

USA Singer Actor

T locatedIn type T ' 1 type
bomnin married

Tupelo «———Elvis Pres|eY———— Priscilla Presley




Problem
Statement




- Representing an
ontology as a node and
edge graph

- Classic visualization
problem

- How to picture lots of
Information in the most
useful way



- Understand structure of
semantic net

- Not too “cluttered™

- Edge crossings

- Occluding vertices

with edges

- Angular resolution

problem



Amino Acid Ontology

Good Layout Bad Layout



Common
Solutions






- Basic idea: Springs and Rings
- Each node is a ring, connected to other node
by springs (edges)
- Initial layout usually randomly generated*

- Attractive Force
- The strength with which two nodes connected
by edge attract each other
- Repulsive Force
- The strength with which non-neighboring nodes
repel each other

hip:iihl.ocks org/mbostock/1062288



- Temperature/Cooling

- Each node Is assigned an initial
temperature

- Temperature is decreased with each

iteration of algorithm until it reaches

zero, and optimal layout is achieved




- Major issues

- Occluding vertices with edges on
complex graph

- Angular resolution, edge crossing
- Not scalable for large graphs

- Repulsive force requires O(|V|*|V])

computation time
- Not well-suited for large ontologies






- Extrapolates relationships between
“related” nodes

- Helps elucidate structure of graph

- Cluster building Is time intensive, not

scalable




Filtering
Techniqgues



- Get rid of certain edges
and vertices In order to
de-clutter* graph

- Preserve overall

structure of graph




Power Law




- As degree of node increases, frequency
decreases

- Few “core” nodes with many edges with many
non-core nodes

- Many graphs of interest follow this distribution

- Interaction networks and ONTOLOGIES




Proposed Solution:

General Idea
1. Sort nodes by degree to extract core nodes
2. While temperature '=0

a. Calculate attraction force among Power-Nodes and their
neighbors

b. Calculate Repulsive Force among Power-Nodes

c. Calculate attraction force among Non-power Nodes and
their neighboring Nodes

d. Calculate repulsive force among Non-power Nodes
e. Calculate and Update (x,y) position of nhodes

f. Reduce temperature each iteration




= Scaling Method: re-size based
on degree

» Attraction Force: nodes connected b
edge attract each other (springs)

® Repulsion Force: all nodes
repel each other



where,

o0; = scale of node 7.
3

d; = degree of node i.

A (G) = maximum degree of graph G.
and o; < k;wherex is a defined constant.




= Scaling Method: re-size based
on degree

» Attraction Force: nodes connected b
edge attract each other (springs)

® Repulsion Force: all nodes
repel each other



Algorithm 1: AttractionForce

Data: n — node.d — degree:

N —: Nodes.E — Edges: K +— StretchConstant:

Input : The graph G < N,V > and < n,d >— set
of node-degree pairs;

Description: Attraction force among connected nodes, by
updating their (x,v) coordinates to bring
them closer to each other.

begin

for i < 1 to |N| do
for j < 1to |E;,| do
ny < i and n, < Other end node of 1,

Ax 4= myy — 1oy
Ay =y, —nzy
Length + \/Ax x Ax+ Ay x Ay

Length—k
kx(100)

force +
dy + force x Ax
dy +force x Ay
nyy & My —dy
Myy My, —dy

fay +— My +dx

Ny 4= 1y +dy

end
end
17 end




= Scaling Method: re-size based
on degree

» Attraction Force: nodes connected b
edge attract each other (springs)

® Repulsion Force: all nodes
repel each other



Algorithm 2: RepulsionForce

Data: n —: node;d — degree;
N — Nodes;E — Edges ;
k — Repulsion Constant;
d, —+ distance co-efficient of ny;
dy — distance co-efficient of 7, ;R = Random Value;
A —+ a constanct mitially set to 700;
Input . < n,d >— nodes along their degrees;
Description: Repulsive force between non-connected
nodes, by updating their (x,y) coordinates to
move them away from each other.
begin
fori+ 1to N do
n i
for j < i+1toN do
ny + jd.=0andd, =0

Ax —npy—nry

Ay+npy—my

Length + \/Ax x Ax + Ay x Ay
if Length equal to 0 then ;
// Collision Detection

‘ dy =Randdy =R

end
end

else if Length < A2 then : // Distance
Limit

L dtelﬁdT;lﬁandr{,.(—l_E‘%—ﬁ
. ...d
force + {"—1%"—11

Ny 4 Ny +dy * force

nyy, < nyy+dy * force

N2, 4 My, —dy = force

Ny N2y — d, = force




= Scaling Method: re-size based
on degree

» Attraction Force: nodes connected b
edge attract each other (springs)

® Repulsion Force: all nodes
repel each other



Optimizations
. Tempelrgture
- Core nodes (power nodes) are
given a higher initial
temperature, to allow for more
readjustment
- Semantic Filtering
- Removing non-essential edges/
nodes to decrease cluttering
- Preserve overall structure of
graph
- Structural primitives from XML,
RDF(S), OWL, etc..

A\



Unfiltered Graph Filtere

4] GV=350,E=1484) (b) GIV=319,E=1167)

Fig. 5: Semantic filtration (a) Unfiltered graph, (b) Filtered graph
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(a) G(V=350,E=1484) (b) G(V=319,E=1167)

Fig. 5: Semantic filtration (a) Unfiltered graph, (b) Filtered graph




Table 1: Filtration statistics on nodes and edges

Unfiltered Graph | Filtered Graph
Triples




Comparison with
other Algorithms:

- Complexity reduction
- Clearer* Graphs



Improvement (?)

Attractive Force = O(|V, | |E£,|)

Repulsive Force = O(|V,*])

Forces Complexity = @(’I/p‘ : (’V};‘ + ’Ep|))
—V,, — Number of Power Nodes.

—I, — Number of Edges connected to Power Nodes
—Moreover, V, < V and L), < E



Improvement

Execution Time Vs Layout Algorithms

Time [seconds)
8

Fig. 10: Comparisoh of time to layout (in logrithmic scale) of
various graph layout algorithms.



Comparison with
other Algorithms:

- Complexity reduction
- Clearer* Graphs



oo

a) Pawer Layout b Modified Spring <} Frutcherman-Reingald

11: Layout comparison on OCW Ontology ol 1,515 triples
filtered graph G(V=246.T'=1,245).

a) Power Layout b} Modilied Spring ¢} Frutcherman-Reingeld

son on Food ontology of 870 triples
=0604).




Comparison with
other Algorithms:

- Complexity reduction
- Clearer* Graphs



Method In Action

Fig. 13: Symusetrical and clustered gaps of small oulologics



-

GeoNames Ontology SIDC-NS Onblog) ) NetCDF-discovery Ontology
Tnples=104, G(28.52) Triples=615, G(104.279) Triples=150. G(51.82)

- ®

URIPlay Oniology NetCDF -attribute Ontology Bhakti Ontology
Triples=397, G( l-l('Jr'f"] 55) Triples=3T8. G{77.133) Triples=195, G(58,56)

DBPedia Onto
Triples=5633, G(1565,1842)

Fig. 13: Symmetrical and clustered graphs of small ontologies.




~ TCM Ontology SI0C-N§ Ontology
Triples=672, G(292, 574) Triples=615, G(104,279)

ACM Taxonomy Or.nuloy University Dataset (LUBH) Ontology
Triples=3728, G(1768.1758) Triples=5454, G(1005,3737)

SKOS Ontology Open-BioMed TCM Ontology
Triples=1954, G(399,1544) Triples=5950, (5(2554,5098)

Fig. 14: Large scale symmetrical, dense, clustered visualizations.




Table 2: NavigOwl Results on power-layout

5
5




Twitter Case Study

- Modeling "who follows who" tuples®
using this algorithm

my el Lwiler ¢ lilogy

Dutusel Records

s i Nenag1



Table 3: Tuples represnting ‘who follows who?’ in Twitter

Twitter User ID
357282
6633812 6353282
017692
1951565
G119

8195652
15015170
8098614
3785461
40RKT009
3268444

—




Table 4: Mapping of Twitter dataset to ontology schema.

20,000 1342
30.000 20,529
0,000 28,500
50.000 36,226
60.000 12,65




Dataset Tuples=35000 Dataset Tuples=10000
Tripl 32, G(280.528) Triples=906, G(432,902)

Dataset Tuples=15000
inlas=53 2706.5389) Dataset Tuples=20000
TN, Triples=11346, G(3663.11342)

Dataset Tuples=30000
Triples=20333, G(10250,20529)

Fig. 15: Twitter Dataset Visualizations on NavigOWL.
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