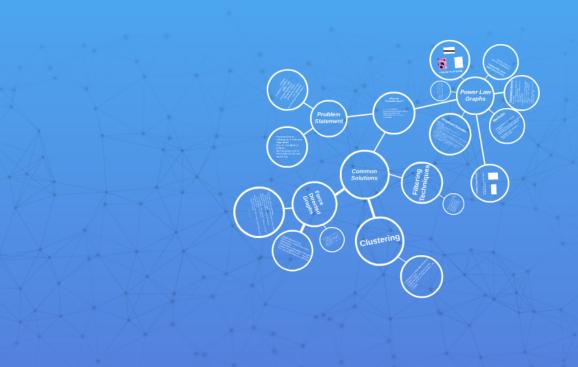
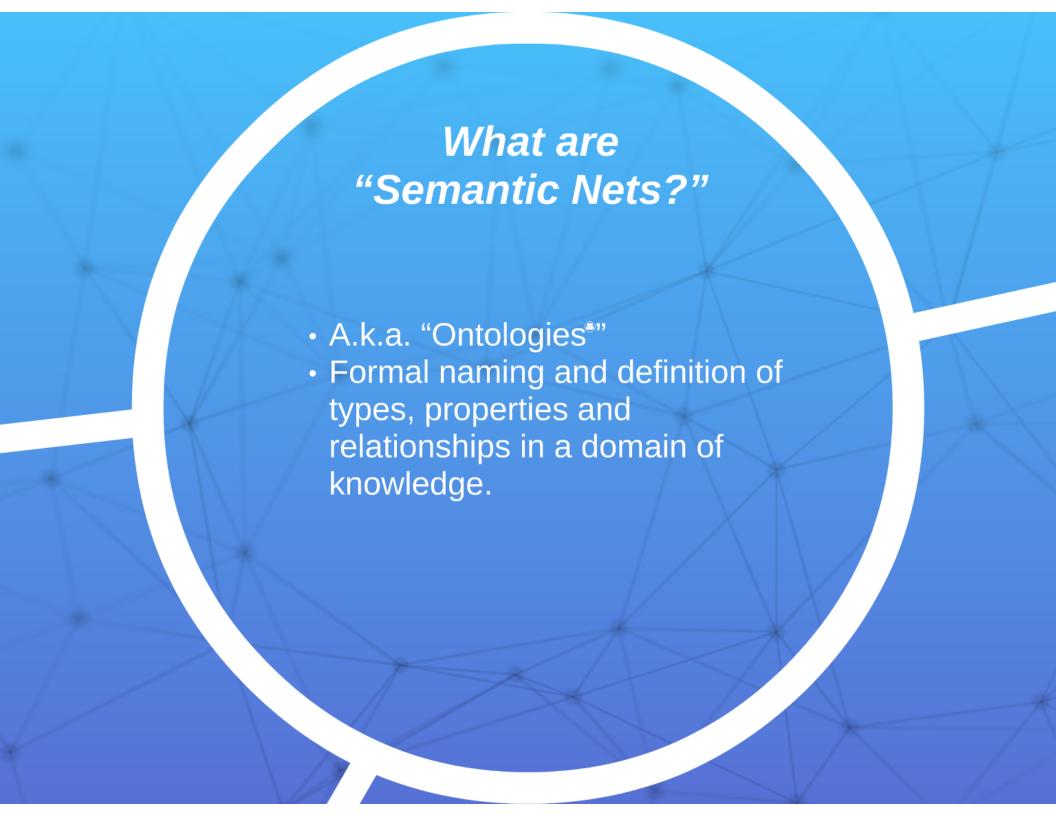
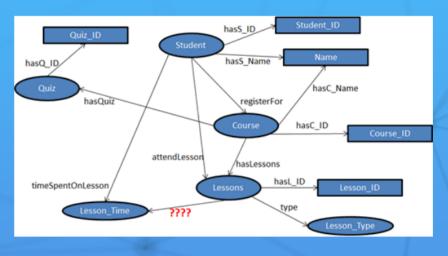
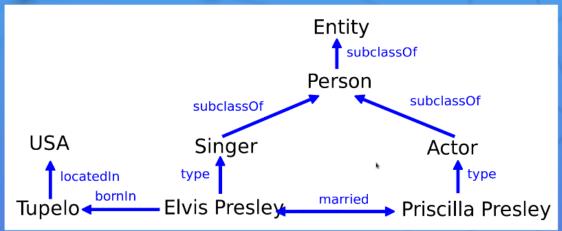
Scalable Visualization of Semantic Nets Using Power Law Graphs



Scalable Visualization of Semantic Nets Using Power Law Graphs







Problem Statement

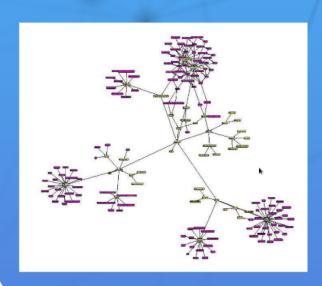
- Representing an ontology as a node and edge graph
- Classic visualization problem
- How to picture lots of information in the most useful way

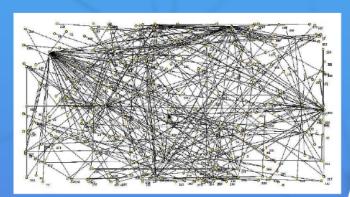
- Understand structure of semantic net
- Not too "cluttered"
 - Edge crossings
 - Occluding vertices with edges
 - Angular resolution problem

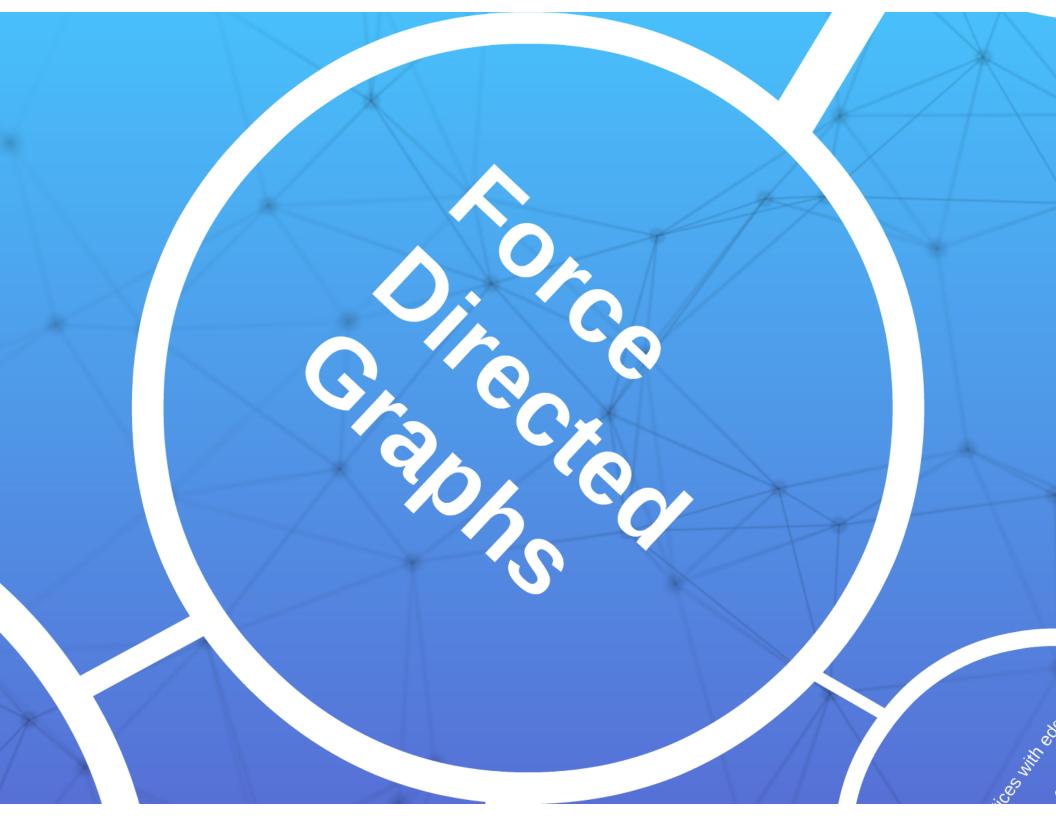
Amino Acid Ontology

Good Layout

Bad Layout



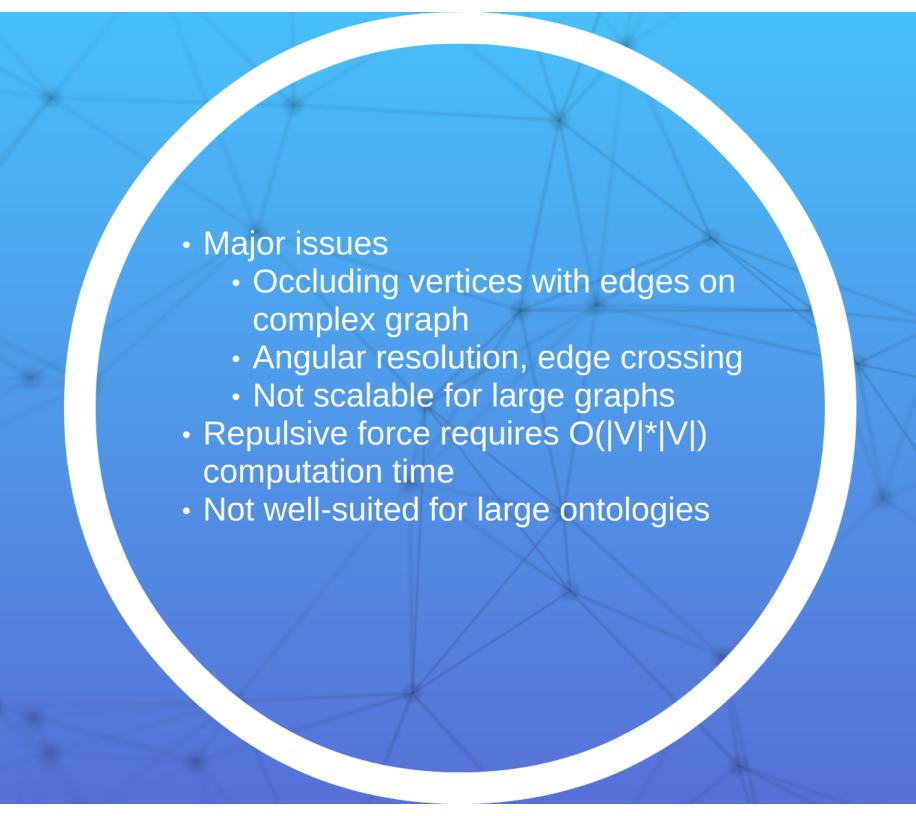


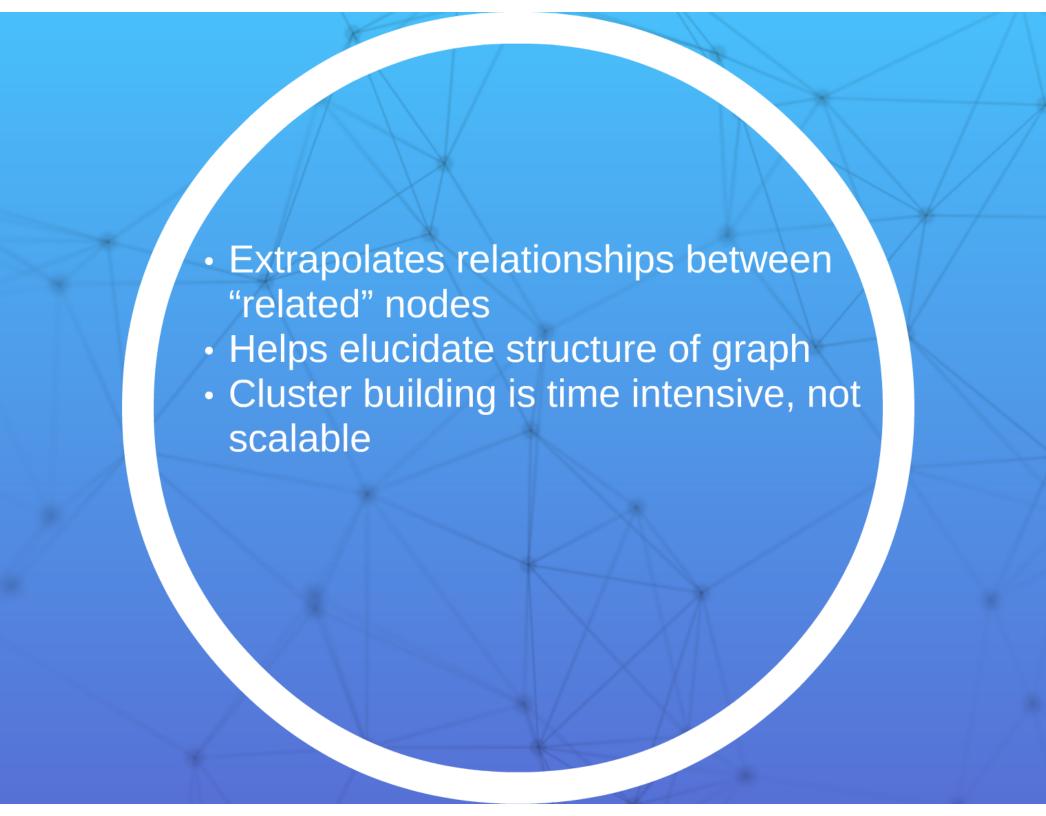


- Each node is a ring, connected to other nodes by springs (edges)
- Initial layout usually randomly generated*
- Attractive Force
 - The strength with which two nodes connected by edge attract each other
- Repulsive Force
 - The strength with which non-neighboring nodes repel each other

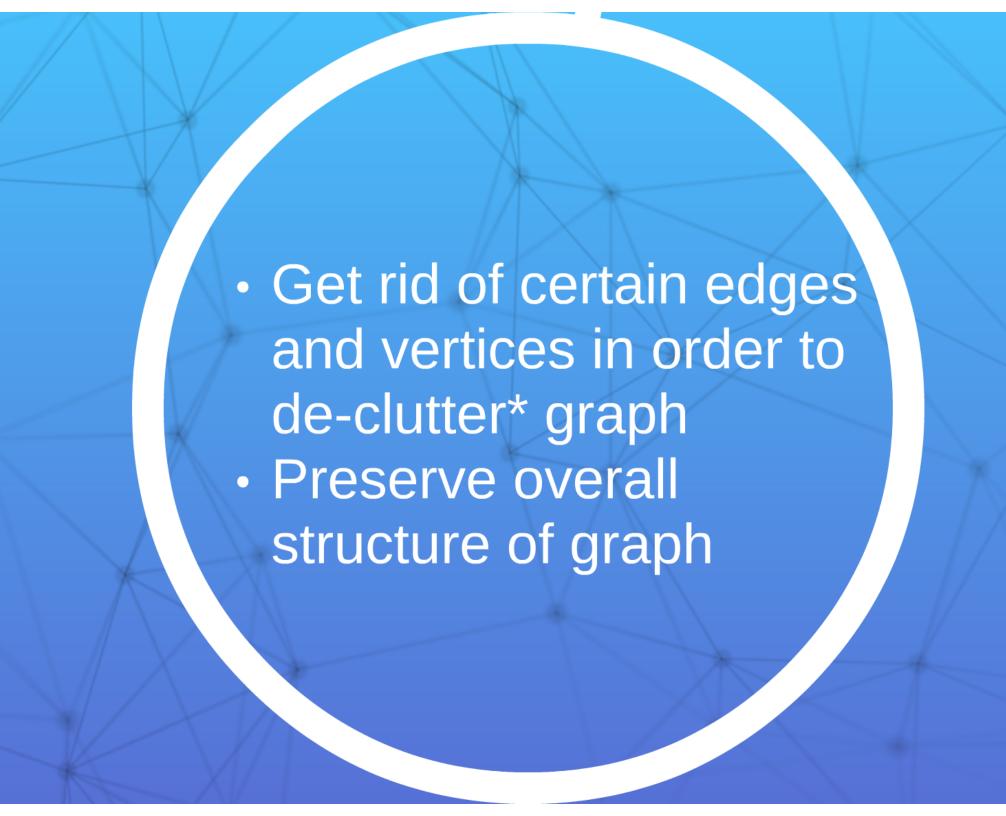
http://bl.ocks.org/mbostock/1062288

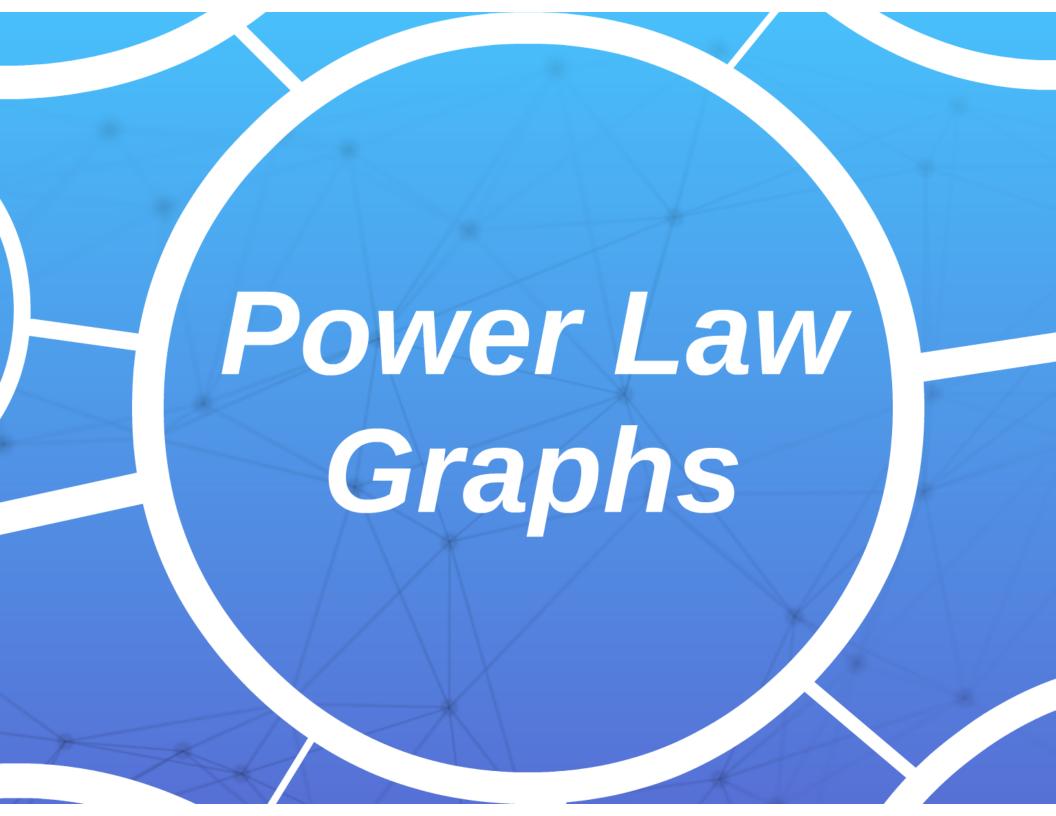
Temperature/Cooling Each node is assigned an initial temperature Temperature is decreased with each iteration of algorithm until it reaches zero, and optimal layout is achieved

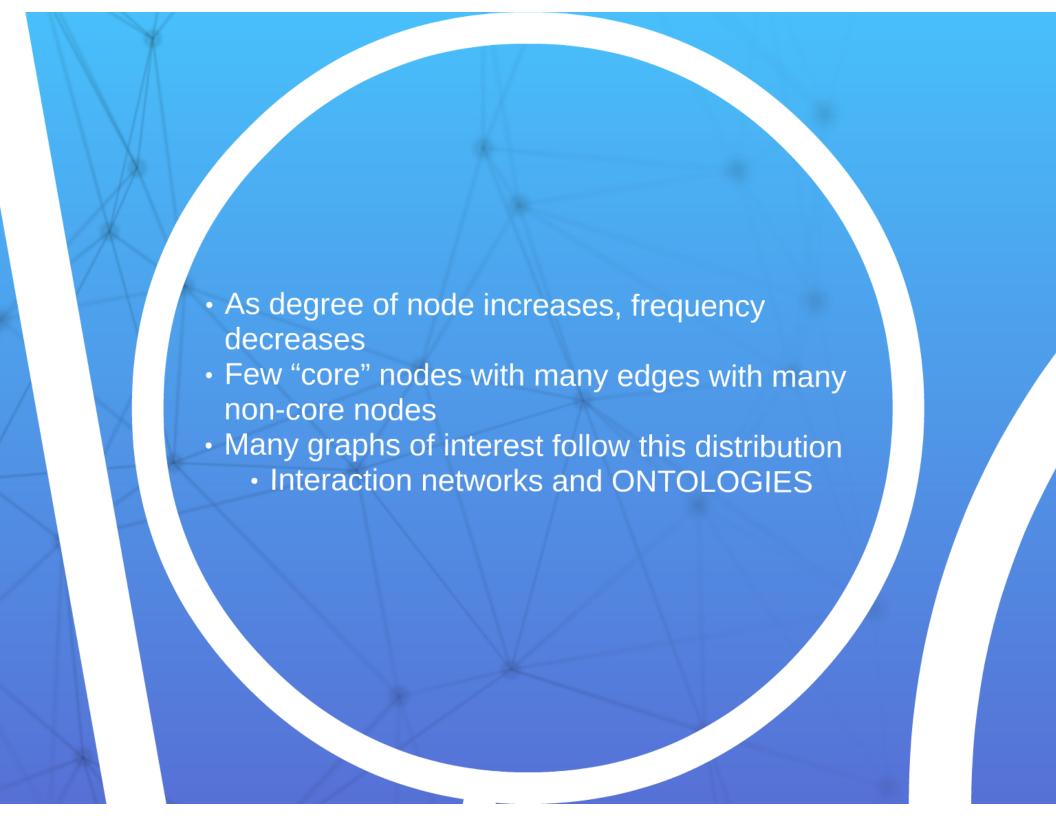




Filtering Techniques







Proposed Solution:

General Idea

- 1. Sort nodes by degree to extract core nodes
- 2. While temperature != 0
 - a. Calculate attraction force among Power-Nodes and their neighbors
 - b. Calculate Repulsive Force among Power-Nodes
 - c. Calculate attraction force among Non-power Nodes and their neighboring Nodes
 - d. Calculate repulsive force among Non-power Nodes
 - e. Calculate and Update (x,y) position of nodes
 - f. Reduce temperature each iteration

Methods

- Scaling Method: re-size based on degree
- Attraction Force: nodes connected by edge attract each other (springs)
- Repulsion Force: all nodes repel each other

$$\sigma_{i} = \left[\frac{d_{i}}{\Delta\left(G\right)}\right] \times \kappa \tag{1}$$

where,

 σ_i = scale of node i.

 d_i = degree of node i.

 $\Delta (G) = \text{maximum degree of graph } G.$

and $\sigma_i \leq \kappa$; where κ is a defined constant.

Methods

- Scaling Method: re-size based on degree
- Attraction Force: nodes connected by edge attract each other (springs)
- Repulsion Force: all nodes repel each other

Algorithm 1: AttractionForce **Data**: $n \longrightarrow node$; $d \longrightarrow degree$; $N \longrightarrow Nodes; E \longrightarrow Edges; k \leftarrow StretchConstant;$: The graph G < N, V > and $< n, d > \longrightarrow set$ Input of node-degree pairs; **Description**: Attraction force among connected nodes, by updating their (x, y) coordinates to bring them closer to each other. 1 begin for $i \leftarrow 1$ to |N| do for $j \leftarrow 1$ to $|E_{n_j}|$ do $n_1 \leftarrow i$ and $n_2 \leftarrow$ Other end node of n_1 $\Delta x \leftarrow n_{1x} - n_{2x}$ $\Delta y \leftarrow n_{1y} - n_{2y}$ Length $\leftarrow \sqrt{\Delta x \times \Delta x + \Delta y \times \Delta y}$ force $\leftarrow \frac{\mathsf{Length} - k}{k \times (100)}$ $d_x \leftarrow \mathsf{force} \times \Delta x$ $d_{v} \leftarrow \mathsf{force} \times \Delta y$ 10 $n_{1x} \leftarrow n_{1x} - d_x$ 11 $n_{1y} \leftarrow n_{1y} - d_y$ 12 $n_{2x} \leftarrow n_{2x} + d_x$ 13 $n_{2y} \leftarrow n_{2y} + d_y$ 14 end 15 end 16 17 end

Methods

- Scaling Method: re-size based on degree
- Attraction Force: nodes connected by edge attract each other (springs)
- Repulsion Force: all nodes repel each other

```
Algorithm 2: RepulsionForce
    Data: n \longrightarrow node; d \longrightarrow degree;
    N \longrightarrow Nodes; E \longrightarrow Edges;
    k → Repulsion Constant;
   d_x \longrightarrow distance co-efficient of n_1;
   d_y \longrightarrow distance co-efficient of n_2;R = Random Value;
    \lambda \longrightarrow a constanct initially set to 700;
                     : < n,d > --- nodes along their degrees;
    Input
   Description: Repulsive force between non-connected
                      nodes, by updating their (x,y) coordinates to
                      move them away from each other.
 1 begin
          for i \leftarrow 1 to N do
                n_1 \leftarrow i
 3
                for j \leftarrow i + 1 to N do
                     n_2 \leftarrow j \ d_x = 0 \text{ and } d_y = 0
                     \Delta x \leftarrow n_{1 x} - n_{2 x}
                     \Delta y \leftarrow n_{1y} - n_{2y}
                     Length \leftarrow \sqrt{\Delta x \times \Delta x + \Delta y \times \Delta y}
                     if Length equal to 0 then;
                     // Collision Detection
10
                           d_x = R and d_y = R
11
                     end
12
                end
13
                else if Length < \lambda^2 then;
                                                             // Distance
14
                Limit
15
                    d_x \leftarrow \frac{\Delta x}{\mathsf{Length}} and d_y \leftarrow \frac{\Delta y}{\mathsf{Length}}
16
17
               force \leftarrow \frac{(n_{1k} \times n_{2k})}{80}
18
               n_{1x} \leftarrow n_{1x} + d_x * force
19
               n_{1y} \leftarrow n_{1y} + d_y * \text{force}
20
               n_{2x} \leftarrow n_{2x} - d_x * \text{force}
21
               n_{2y} \leftarrow n_{2y} - d_y * \text{force}
22
23
          end
24 end
```

Methods

- Scaling Method: re-size based on degree
- Attraction Force: nodes connected by edge attract each other (springs)
- Repulsion Force: all nodes repel each other

Optimizations

- Temperature
 - Core nodes (power nodes) are given a higher initial temperature, to allow for more readjustment
- Semantic Filtering
 - Removing non-essential edges/ nodes to decrease cluttering
 - Preserve overall structure of graph
 - Structural primitives from XML, RDF(S), OWL, etc.

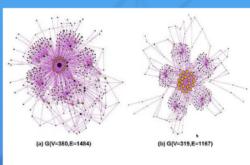


Fig. 5: Semantic filtration (a) Unfiltered graph, (b) Filtered graph

Table 1: Filtration statistics on nodes and edges

Triples	Unfiltered Graph		Filtered Graph		
	Nodes	Edges	Nodes	Edges	
1,515	474	1,515	246	1,245	
5,527	3,045	5,527	1,738	3,467	
7,330	3,090	7,330	1,052	2,149	
10,893	5,937	10,893	3,446	6,830	
16,229	8,697	16,629	5,097	10,250	
47,003	34,291	47,003	11,767	23,490	

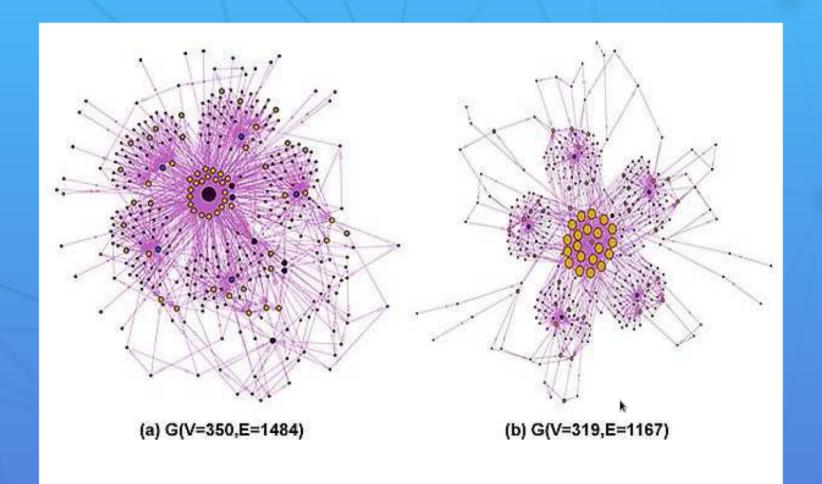


Fig. 5: Semantic filtration (a) Unfiltered graph, (b) Filtered graph

Table 1: Filtration statistics on nodes and edges

Triples	Unfiltered Graph		Filtered Graph	
	Nodes	Edges	Nodes	Edges
1,515	474	1,515	246	1,245
5,527	3,045	5,527	1,738	3,467
7,330	3,090	7,330	1,052	2,149
10,893	5,937	10,893	3,446	6,830
16,229	8,697	16,629	5,097	10,250
47,003	34,291	47,003	11,767	23,490

Comparison with other Algorithms: Complexity reduction Clearer* Graphs

Improvement (?)

```
Attractive Force \Rightarrow \Theta(|V_p||E_p|)
```

Repulsive Force
$$\Rightarrow \Theta(|V_p^2|)$$

Forces Complexity
$$\Rightarrow \Theta(|V_p| \cdot (|V_p| + |E_p|))$$

- $V_p \rightarrow$ Number of Power Nodes.

- $-\dot{E_p} \rightarrow$ Number of Edges connected to Power Nodes
- -Moreover, $V_p \ll V$ and $E_p \ll E$

Improvement

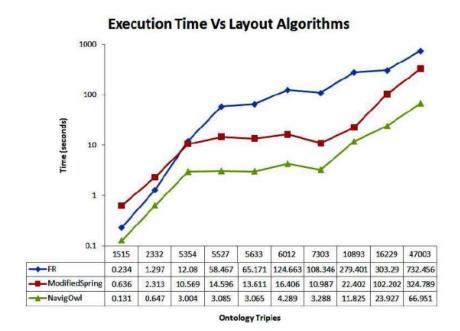


Fig. 10: Comparison of time to layout (in logrithmic scale) of various graph layout algorithms.

Comparison with other Algorithms: Complexity reduction Clearer* Graphs

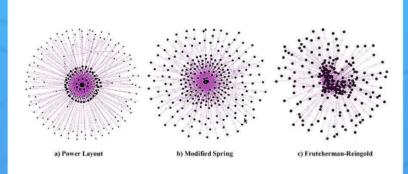


Fig. 11: Layout comparison on OCW Ontology of 1,515 triples filtered graph G(V=246,E=1,245).

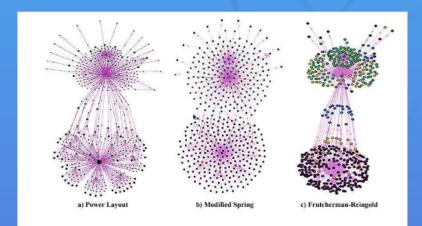
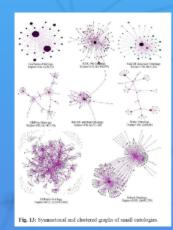


Fig. 12: Layout comparison on Food ontology of 870 triples filtered graph G(V=339, E=604).

Comparison with other Algorithms: Complexity reduction Clearer* Graphs

Method in Action



The Hall are seale symmetrical dense, characterist revanismnors.

Ontology	Triples	V	E	Time(s)
GeoNames	104	28	52	0.037
TransOntology Bhakti	195	58	56	0.042
IRI Library CF	378	77	133	0.047
URIplay	597	147	155	0.232
SIOC-NS	615	104	279	0.039
SKOS	1,954	399	1,544	0.146
School	2,178	476	779	* 0.231
University (LUBII)	5,454	1,095	3,737	2.103
DBPedia	5.633	1,563	1,842	3.198
Barton Subgraph	5,863	1,902	3,691	4.593
Open-BioMed TCM	5,950	2,554	5,098	6.768
TDWG Geography	7,303	1,052	2,149	3.807
1.OID OrdnanceSurvey	47,003	11,767	23,490	17,595

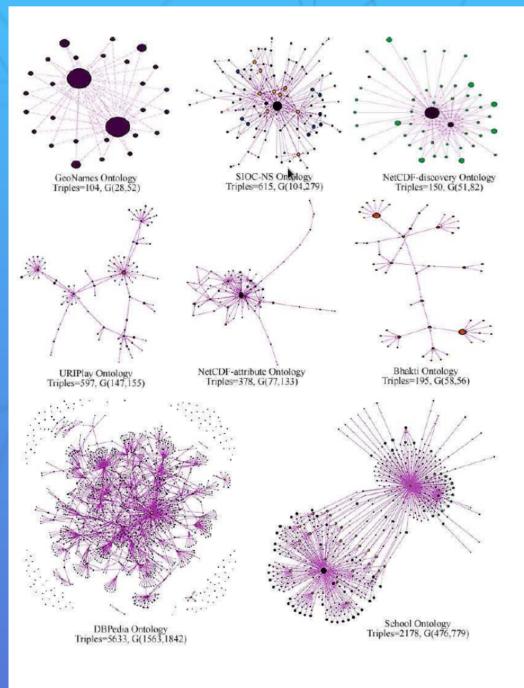


Fig. 13: Symmetrical and clustered graphs of small ontologies.

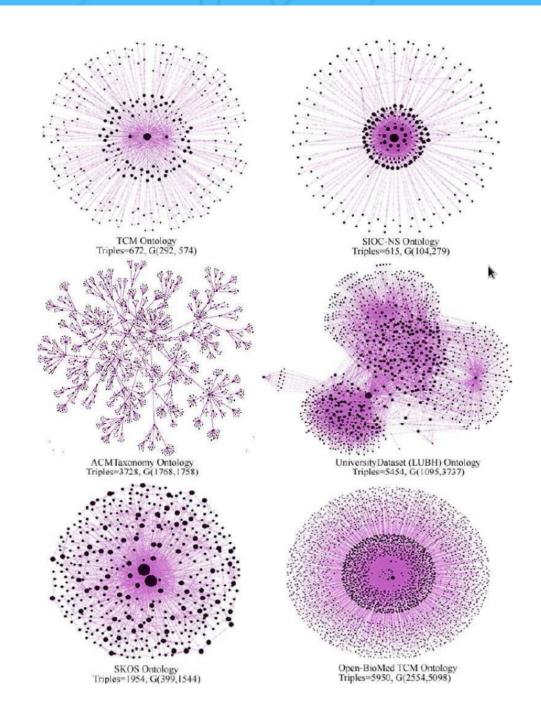


Fig. 14: Large scale symmetrical, dense, clustered visualizations.

 Table 2: NavigOwl Results on power-layout

Ontology	Triples	V	E	Time(s)
GeoNames	104	28	52	0.037
TransOntology Bhakti	195	58	56	0.042
IRI Library CF	378	77	133	0.047
URIplay	597	147	155	0.232
SIOC-NS	615	104	279	0.039
SKOS	1,954	399	1,544	0.146
School	2,178	476	779	№ 0.231
University (LUBH)	5,454	1,095	3,737	2.103
DBPedia	5,633	1,563	1,842	3.198
Barton Subgraph	5,863	1,902	3,691	4.593
Open-BioMed TCM	5,950	2,554	5,098	6.768
TDWG Geography	7,303	1,052	2,149	3.807
LOID OrdnanceSurvey	47,003	11,767	23,490	17.595

Twitter Case Study

Modeling "who follows who" tuples using this algorithm

Table 4: Mapping of Twitter dataset to ontology schema.					
Dataset Records	Ontology Triples	V	E		
5,000	532	280	528		
10,000	906	473	902		
15,000	5,393	2,706	5,389		
20,000	11,346	5,663	11,342		
30,000	20,533	10,250	20,529		
40,000	28,504	14,161	28,500		
50,000	36,230	17,929	36,226		
60,000	42,649	21,004	42,645		

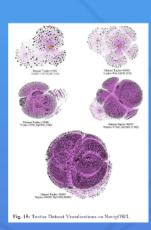


 Table 3: Tuples represnting 'who follows who?' in Twitter

Twitter User ID	Twitter Follower ID
6353282	783214
6633812	6353282
7017692	6633812 **
14951565	7017692
14681199	7017692
8195652	14681199
15015170	8195652
68998614	15015170
3785461	68998614
40887009	3785461
53268444	40887009

Table 4: Mapping of Twitter dataset to ontology schema.

Dataset Records	Ontology Triples	V	E
5,000	532	280	528
10,000	906	473	902
15,000	5,393	2,706	5,389
20,000	11,346	5,663	11,342
30,000	20,533	10,250	20,529
40,000	28,504	14,161	28,500
50,000	36,230	17,929	36,226
60,000	42,649	21,004	42,645

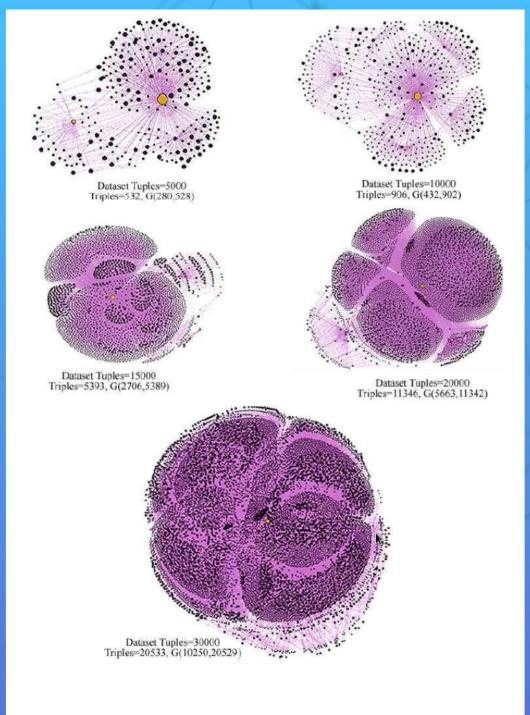


Fig. 15: Twitter Dataset Visualizations on NavigOWL.

Scalable Visualization of Semantic Nets Using Power Law Graphs

