
MOOCLink: Building and Utilizing Linked Data
from Massive Open Online Courses

Sebastian Kagemann
Arizona State University—Polytechnic Campus

CRA-W Distributed Research Experience
Mesa, Arizona 85212, USA

sakagema@indana.edu

Srividya Kona Bansal
Arizona State University—Polytechnic Campus

Department of Engineering
Mesa, Arizona 85212, USA

srividya.bansal@asu.edu

Abstract—Linked Data is an emerging trend on the web with

top companies such as Google, Yahoo and Microsoft promoting
their own means of marking up data semantically. Despite the
increasing prevalence of Linked Data, there are a limited number
of applications that implement and take advantage of its
capabilities, particularly in the domain of education. We present
a project, MOOCLink, which aggregates online courses as
Linked Data and utilizes that data in a web application to
discover and compare open courseware.

Keywords—linked data; education; ontology engineering

I. INTRODUCTION
 Linked Data involves using the Web to create typed links

between data from different sources [1]. Source data may vary
in location, size, subject-matter and how congruously it is
structured. Typed links produced from this data create
uniformity and define properties explicitly in an effort to make
data easier to read for machines. This is opening up
opportunities for applications that were previously impractical
such as Berners-Lee’s intelligent agents [2].

Linked Data is relatively unexplored in the domain of
education. Although there are several data models for
structuring educational data as well as repositories adopting
these models [3], Linked Data-driven educational applications
are far and few between. As a result, initiatives such as the
LinkedUp Challenge have surfaced to encourage innovative
applications focused on open educational data [4].

Massive Open Online Courses or MOOCs are online
courses accessible to anyone on the web. Hundreds of
institutions have joined in an effort to make education more
accessible by teaming up with MOOC providers such as
Coursera and edX [5]. Delivering course content through
lecture videos as well as traditional materials such as readings
and problem sets, MOOCs encourage interactivity between
professors and students around the world by way of discussion
forums and graded assessments.

Coursera, a leading MOOC provider, offers a RESTful API
[6] for most information associated with their course catalog.
This includes properties such as a courses’s title, instructor,
and syllabus details. Although Coursera’s course catalog data
is easily accessible as JSON, there is no option to retrieve and
use it in a Linked Data format such as the Resource
Description Framework (RDF). Moreover, there is little to no

Linked Data available for MOOCs or an ontology that denotes
properties unique to MOOCs.

In order to incorporate MOOC data into the Linked Data
cloud as well as demonstrate the potential of Linked Data when
applied to education, we propose to (i) build or extend an RDF
ontology that denotes MOOC properties and relationships (ii)
use our ontology to generate Linked Data from multiple
MOOC providers and (iii) implement this data in a practical
web application that allows users to discover courses across
different MOOC providers.

II. BACKGROUND

A. Resource Description Framework
The most notable model for Linked Data is the Resource

Description Framework (RDF), which encodes data as subject,
predicate, object triples [7]. The subject and object of a triple
are both Uniform Resource Identifiers (URIs), while the
predicate specifies how the subject and object are related, also
using a URI. For the purposes of this paper, Linked Data is
presented as RDF/XML, an XML syntax for RDF, which is
also used in the implementation of our application.

B. Simple Protocol and RDF Query Language
 Simple Protocol and RDF Query Language or SPARQL is
an RDF query language that allows users to retrieve and
manipulate data stored as RDF [8]. SPARQL is used as our
application’s query language in order to retrieve data to
populate web pages with course information. A SPARQL
endpoint for our data can be accessed at
http://sebk.me:3030/sparql.tpl.

C. Linked Data Principles
Tim Berners-Lee published a set of rules for publishing

data on the Web so that data becomes part of a global space in
which every resource is connected. The rules are as follows:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those
names

3. When somone looks up a URI, provide useful
information (RDF, SPARQL)

4. Include links to other URIs, so that they can discover
more things

These principles provide a basis for contributing to a
Linked Data cloud in which a variety of datasets from different
fields of human knowledge are interconnected. Our project
aims to abide by these principles.

D. Linked Education Data
Many models have been devised for structuring educational

data, among the most popular are the IEEE Learning Object
Metadata (LOM) specification and Sharable Content Object
Reference model (SCORM). LOM is encoded in XML and
includes nine categories with sub-elements that hold data. An
RDF binding for LOM exists [9], however development is
halted at the time of this paper’s writing [10]. SCORM is an
extensive technical standard, typically encoded in XML, that
defines how educational content should be packaged, how it is
delivered, and how learners navigate between different parts of
an online course [11]. An RDF binding of SCORM has yet to
be developed. Rather than using the defunct LOM binding or
creating a new binding of SCORM to RDF, we chose to extend
a vocabulary meant for Linked Data, Schema.org, for which an
RDF mapping exists [12], to include properties unique to open
courseware.

In 2013, the Learning Resource Metadata Initiative (LRMI)
specification was incorporated into Schema.org’s vocabulary
for tagging educational content [13]. The properties added in
this adoption introduced fields for online course details
including the type of learning resource, time required, and so
on. While there is significant overlap between LRMI’s
additions to Schema.org, Schema.org’s Creative Work
properties and MOOC course details like those provided in
Coursera’s API, several crucial missing data fields such as
syllabus details, course difficulty, and predicates linking
courses to other objects, make it necessary to extend the
vocabulary for MOOC data.

E. Building Ontologies
After determining that there was no educational resource

ontology that denoted every property needed to create linked
MOOC data, we chose to extend Schema.org’s ontology. In
order to support uniformity in our data, we use RDF/XML
from ontology creation to final data generation.
Schema.rdfs.org hosts an RDF/XML version of Schema.org’s
ontology, which we imported into Stanford Protégé to extend
with additional types and properties.

III. MOOCLINK
MOOCLink is a web application which aggregates online

courses as Linked Data and utilizes that data to discover and
compare online courseware. This section of the paper outlines
our approach including choosing our providers, modeling the
data, data generation, and the development of our web
application.

A. MOOC Providers
Coursera is the largest MOOC provider in the world with

7.1 million users in 641 courses from 108 institutions as of
April 2014 [14]. These courses span 25 categories including 4
subcategories of computer science. All course details are

retrievable by HTTP GET method using Coursera’s RESTful
course catalog API and returned in JSON.

edX is another premier MOOC provider with more than 2.5
million users and over 200 courses as of June 2014 [15]. edX
courses are distributed among 29 categories, many of which
overlap with Coursera’s. edX does not provide an API for
accessing their course catalog, however, as of June 2013,
edX’s entire platform is open-source.

Udacity, founded by Google VP, Sebastian Thrun, is a
vocational course-centric MOOC provider with 1.6 million
users in 12 full courses and 26 free courseware as of April
2014 [16]. The majority of Udacity courses are within the field
of computer science. Udacity does not provide an API for
accessing their course catalog data.

B. Data Model
Schema.org is organized as a hierarchy of types, each

associated with a set of properties. CreativeWork is
Schema.org’s type for generic creative work including books,
movies, and now educational resources. The LRMI
specification adds properties to CreativeWork including the
time it takes to work through a learning resource
(timeRequired), the typical age range of the content’s intended
audience (typicalAgeRange), as well as specifying properties
previously available in Schema.org’s CreativeWork type like
the subject of the content (about) and the publisher of the
resource (publisher) [17].

CreativeWork provides a base type for our ontology
extension, which adds types Course, Session, Category and
their associated properties drawn from MOOC data. The
extension is made in Stanford Protégé [18], which we use to
import the Schema.org vocabulary mapped to RDF at
Schema.RDFS.org. In the GUI of Protégé, types and
properties are added as well as sample individuals to be used
as a model for data generation. The final product is an
ontology in which classes are defined using OWL, the Web
Ontology Language [19], and in which data and object
properties are defined using RDFSchema, which provides
basic elements for the description of ontologies [20]. The
hierarchy of the ontology extension is outlined in the
Implementation section of this paper.

C. Data Generation
Coursera’s list of courses is accessible using their RESTful

API and JSON as the data exchange format. Using Requests, a
Python HTTP library [21], we retrieved a full list of courses,
universities, categories, instructors and course sessions in
JSON using the GET method.

edX and Udacity do not have an API therefore it became
necessary to use a scraper to obtain course data. We used
Scrapy, an open-source screen scraping and web crawling
framework for Python [22] to retrieve properties from edX
and Udacity course pages with XPath selectors. Scrapy
supports multiple formats for storing and serializing scraped
items; we export our data as JSON to maintain uniformity
with the data we retrieve from Coursera.

2014 CRA-W Distributed Research Experience for Undergraduates

After collecting the data, we create Linked Data from
JSON using Apache Jena, an open source Semantic Web
framework for Java [23]. First, we import the ontology model
we created in Protégé to retrieve the types and properties to be
assigned. We use three methods, one for each course provider,
to read JSON specific to each provider (using Google Gson
[24]), map property names from JSON to our ontology’s
properties, and write each property to the RDF graph. The
RDF is output in a flat file, serialized as RDF/XML.

 As recommended by Berners-Lee in his Linked Data
Principles, each property is assigned a URI. HTTP URIs are
used so these resources can be looked up. Because the
majority of our data points to URIs within the same RDF,
hash URIs are used to identify the local resources. More
details on the naming schemes of these URIs are available in
the Implementation section of this paper, where our RDF data
for Coursera, edX, and Udacity is discussed in detail.

D. Web Application
To create an application that is appealing to the eye, we

used Bootstrap [25], a responsive HTML, CSS, and JavaScript
framework to create a UI consistent on both mobile and
desktop devices. Rather than designing each component of the
website, we repurposed a business template for displaying
online courses. The template incorporates many current web
design trends including parallax scrolling and image carousels,
which give it an up-to-date look and feel.

Fuseki is a sub-project of Jena that provides an HTTP
interface to RDF data. For the web component of our project,
we upload our data into a stand-alone Fuseki server from
which we can query and update our RDF by <what>. Fuseki
includes a built-in version of TDB (Tuple Data Base), which
indexes the contents of the file as opposed to storing RDF as a
flat file [26].

 Google App Engine was initially explored as the web
development framework for its automatic scaling and Java
support. Unfortunately an incompatibility between App Engine
and Apache Jena was found as App Engine supports URL
Fetch to access web resources [27] while Jena’s SPARQL
processor, ARQ, implements their HTTP requests using their
own HTTP operation framework [28]. Additionally, App
Engine’s limits on request and response size (10 megabytes
and 32 megabytes respectively) as well as their maximum
deadline on request handlers (60 seconds) could potentially
cause problems if our queries executed slower than anticipated.

 Because of App Engine’s constraints, we opted for a
combination of Apache Tomcat as our web server / servlet
container and JavaServer Pages (JSPs) and Java Servlets for
dynamic web page generation over App Engine’s similar Java
solution. Each JSP uses HTML, CSS and JS from the
Bootstrap template for the UI. Jena ARQ then queries our RDF
on the Fuseki server and writes the course details onto
respective pages. Screenshots of the application demo can be
found in the Implementation section of this paper.

IV. IMPLEMENTATION
This section outlines and provides relevant illustrations of

(i) our extension of Schema.org’s ontology to include MOOC
classes and properties, (ii) web crawling methods, (iii) RDF
data from three different MOOC providers and (iv) our web
application.

A. Ontology Schema
As mentioned in the previous section on our data model,

Schema.org is organized as a hierarchy of types. Much like
object-oriented programming, types inherit properties. Figure
1 displays relevant properties from CreativeWork and other
Schema.org types although our new types, Course, Session
and Category, inherit more properties that are not shown.
Sebastian’s personal domain, sebk.me, is used as a temporary
namespace for the ontology.

Fig. 1. Diagram of Schema.org ontology extension.

B. Web Crawling
 We retrieve Coursera’s course properties via their course
catalog API but use screen scrapers for edX and Udacity. This
section details the process of writing a Scrapy crawler for edX
in Python. After starting a new Scrapy project in the terminal,

we define the Item or container that will be loaded with
scraped data. This is done by creating a scrapy.Item class and
defining its attributes as scrapy.Field objects as shown in
Figure 2. These attributes, which are ultimately output as
JSON, are named slightly different than our RDF properties.
As a consequence, the naming scheme is mapped to the types
defined in our ontology later in our Jena methods, which
convert the collected JSON into RDF/XML.

class	 EdxItem(Item):	
	 	 	 	 name	 =	 Field()	
	 	 	 	 about	 =	 Field()	
	 	 	 	 instructor	 =	 Field()	
	 	 	 	 school	 =	 Field()	
	 	 	 	 courseCode	 =	 Field()	
	 	 	 	 startDate	 =	 Field()	
	 	 	 	 url	 =	 Field()	
	 	 	 	 length	 =	 Field()	
	 	 	 	 effort	 =	 Field()	
	 	 	 	 prereqs	 =	 Field()	
	 	 	 	 video	 =	 Field()	
	 	 	 	 category	 =	 Field()
Fig. 2. Defining attributes for the EdXItem container

In Figure 3 we subclass CrawlSpider
(scrapy.contrib.spiders.CrawlSpider), and define its name,
allowed domains, as well as a list of URLs for the crawler to
visit first. The subsequent lines of code open a list of edX
categories, iterate through those categories and append URLs
to start_urls. These appended URLs lead to paginated lists of
courses in each category. This method was chosen over using
edX’s “All Courses” listing as a start URL in order to gather
category names from each edX course. Category names are
currently not explicitly defined on each edX course page.
class	 EdXSpider(CrawlSpider):	
	 	 	 	 name	 =	 "edx"	
	 	 	 	 allowed_domains	 =	 ["edx.org"]	
	 	 	 	 start_urls	 =	 []	
	 	 	 	 file	 =	 open('data/category_map',	 'r')	
	 	 	 	 for	 line	 in	 file:	
	 	 	 	 	 	 	 	 url="https://www.edx.org/course-‐list/allschools/"	
+	 line.strip()	 +	 "/allcourses"	
	 	 	 	 	 	 	 	 start_urls.append(url)
Fig. 3. Defining the spider and start_urls

 Figure 4 shows our first parse method which takes a URL
from our list of start URLs defined in Figure 3, selects each
course URL listed on the page using the XPath selector
“//strong/a/@href”, then iterates through each site. For each
site, a new EdxItem is declared, “url” and “category” are
assigned, and a new scrapy.Request is made for the URL
selected, calling the parse_details method detailed in Figure 5.
The complete EdxItem is then assigned to the Request.meta
attribute, and the request is appended to a list of every request
made during the crawl.

def	 parse_sites(self,	 response):	

filename	 =	 response.url.split("/")[-‐2]	
open(filename,	 'wb').write(response.body)	
sel	 =	 Selector(response)	
sites	 =	 sel.xpath('//strong/a/@href').extract()	
sites.pop(0)	 #	 remove	 home	 directory	 link	
requests	 =	 []	

for	 site	 in	 sites:	
	 	 	 	 	 	 	 	 	 	 	 	 item	 =	 EdxItem()	
	 	 	 	 	 	 	 	 	 	 	 	 item['url']	 =	 site	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 item['category']=response.request.url.split("/")[5]	
	 	 	 	 	 	 	 	 	 	 	 	 request=scrapy.Request(site,callback=self.parse_details)	
	 	 	 	 	 	 	 	 	 	 	 	 request.meta['item']	 =	 item	
	 	 	 	 	 	 	 	 	 	 	 	 requests.append(request)	
	 return	 requests

Fig. 4. Parsing start_urls

 The next method, parse_details, shown in Figure 5, collects
attributes from individual course pages using XPath selectors.
The majority of these selectors are tailored to the HTML
classes provided by edX, which denote course properties
provided on the course page.

def	 parse_details(self,	 response):	
	 	 	 	 	 	 	 	 filename	 =	 response.url.split("/")[-‐2]	
	 	 	 	 	 	 	 	 open(filename,	 'wb').write(response.body)	
	 	 	 	 	 	 	 	 sel	 =	 Selector(response)	
	 	 	 	 	 	 	 	 item	 =	 response.meta['item']	
	 	 	 	 	 	 	 	 item['name']	 =	 sel.xpath('//h2/span/text()').extract()	
	 	 	 	 	 	 	 	 item['about']=	
sel.xpath('//*[@itemprop="description"]').extract()	
	 	 	 	 	 	 	 	 item['instructor']=sel.xpath('//*[@class="staff-‐
title"]/text()').extract()	
	 	 	 	 	 	 	 	 item['school']=sel.xpath('//*[@class="course-‐detail-‐school	
item"]/a/text()').extract()	
	 	 	 	 	 	 	 	 item['courseCode']=sel.xpath('//*[@class="course-‐detail-‐
number	 item"]/text()').extract()	
	 	 	 	 	 	 	 	 item['startDate']=sel.xpath('//*[@class="course-‐detail-‐
start	 item"]/text()').extract()	
	 	 	 	 	 	 	 	 item['length']=sel.xpath('//*[@class="course-‐detail-‐length	
item"]/text()').extract()	
	 	 	 	 	 	 	 	 item['effort']=sel.xpath('//*[@class="course-‐detail-‐effort	
item"]/text()').extract()	
	 	 	 	 	 	 	 	 item['prereqs']=sel.xpath('//*[@class="course-‐section	
course-‐detail-‐prerequisites-‐full"]/p/text()').extract()	
	 	 	 	 	 	 	 	 item['video']=	
sel.xpath('/html/head/meta[@property="og:video"]/@content').extrac
t()	
	 	 	 	 	 	 	 	 return	 item
Fig. 5. Parsing indiviudal course pages

 Navigating to the Scrapy project folder in the terminal and
issuing the command “scrapy crawl edx –o items.json” yields a
JSON file containing all items scraped from edX. This works
for initializing our data although an item pipeline component
will need to be developed in the future to validate our scraped
data and check for duplicates.

C. RDF Data
The first section of our RDF (Fig. 6) invokes the

namespaces associated with (line 2) our ontology, (line 3)
RDF, (line 4) OWL, (line 5) XMLSchema, (line 6)
Schema.org and (line 7) RDFSchema. These namespaces are
used as prefixes to abbreviate URIs throughout the data.

<rdf:RDF xmlns="http://sebk.me/MOOC.owl#"
 xml:base="http://sebk.me/MOOC.owl"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:schema="http://schema.org"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#">
Fig. 6 RDF/XML namespace declarations

 In Figure 7 line 1, Coursera subject URIs (rdf:about)
are set to “coursera_course_” concatenated with the course ID.
They are preceded by the ontology’s namespace explicitly.
Line 5 sets the type of resource to Course, a class provided by
our MOOC ontology. Data and object properties mapped from
Coursera data to the ontology such as
Recommended_Background are assigned values one by one.
These properties using a “schema” prefix where the property
is inherited from Schema.org and no prefix where the property
is borrowed from our ontology. Lines 4 6, and 8 link the
course to Coursera sessions, categories and instructors
respectively. These linked classes follow a similar subject URI
naming scheme to Coursera courses. They are also instantiated
in RDF/XML in the same way, but with their own properties.

<rdf:Description rdf:about="http://sebk.me/MOOC.owl#coursera_course_83">
 <Course_Format>The class consists of lecture videos, 8 - 15 minutes in length. These
contain 2-3 integrated quiz questions per video. There are standalone quizzes each
week. Total lecture time is ~ 14 hours.
</Course_Format>
 <Course_ID>83</Course_ID>
 <hasSession>http://sebk.me/MOOC.owl#coursera_session_410</hasSession>
 <rdf:type rdf:resource="http://sebk.me/MOOC.owl#Course"/>
 <hasCategory>http://sebk.me/MOOC.owl#category_10</hasCategory>
 <schema:name>Drugs and the Brain</schema:name>
 <isTaughtBy>http://sebk.me/MOOC.owl#coursera_instructor_640696</isTaughtBy>
 <schema:timeRequired>4-6 hours/week</schema:timeRequired>
 <schema:inLanguage>en</schema:inLanguage>
 <hasSession>http://sebk.me/MOOC.owl#coursera_session_971466</hasSession>
 <Recommended_Background>Neuroscience, the most interdisciplinary science of the
21st century, receives inputs from many other fields of science, medicine, clinical
practice, and technology. Previous exposure to one or more of the subjects listed in
"Suggested Readings" will provide a good vantage point, as we introduce material
from these subjects.</Recommended_Background>
 <hasCategory>http://sebk.me/MOOC.owl#category_3</hasCategory>
 <schema:about>What happens in the body when a person smokes a cigarette? After
several weeks of smoking? When a person takes antidepressant or antipsychotic
medication? A drug for pain, migraine, or epilepsy? A recreational drug? Neuroscientists
are beginning to understand these processes. You’ll learn how drugs enter the brain, how
they act on receptors and ion channels, and how “molecular relay races” lead to changes
in nerve cells and neural circuits that far outlast the drugs themselves. “Drugs and the
Brain” also describes how scientists are gathering the knowledge required for the next
steps in preventing or alleviating Parkinson’s, Alzheimer’s, schizophrenia, and drug
abuse.</schema:about>
</rdf:Description>
Fig. 7. Sample of Coursera course data in RDF/XML

edX courses (Fig. 8) follow the same subject URI format as
Coursera’s with “edx_course_” appended to edX’s mixed
character and integer IDs. Note that on line 8 that the category
is in the 300s rather than the single or double-digit category
URIs seen in the previous RDF snippet. Although most of
edX’s courses are mapped to categories drawn from Coursera
JSON, some edX categories did not have an equivalent
category. As a result, additional edX categories were added to
our RDF with IDs starting at 300. Support to map relevant
courses from other providers to these new categories is
currently not implemented. An additional difference in this
data is that the session and instructor (lines 5 and 6) do not
have unique IDs. To accommodate this change, we append
course IDs to the subject URIs of the edX session and
instructor.
<rdf:Description rdf:about="http://sebk.me/MOOC.owl#edx_course_OEE101x">

 <schema:name>Our Energetic Earth</schema:name>
 <schema:video>http://www.youtube.com/v/lQc13b-

g2io?version=3&amp;autohide=1</schema:video>
 <schema:inLanguage>English</schema:inLanguage>
 <hasSession>http://sebk.me/MOOC.owl#edx_session_OEE101x</hasSession>
 <isTaughtBy>http://sebk.me/MOOC.owl#edx_instructor_OEE101x</isTaughtBy>
 <schema:timeRequired>2-3 hours per week (6 weeks)</schema:timeRequired>

 <hasCategory>http://sebk.me/MOOC.owl#category_308</hasCategory>
 <Course_ID>OEE101x</Course_ID>
 <Recommended_Background>None.</Recommended_Background>
 <schema:about><h4>
 Note - This is an Archived course</h4>
<p>This is a past/archived course. At this time, you can only

explore this course in a self-paced fashion. Certain features of this course may not be
active...</schema:about>

 <rdf:type rdf:resource="http://sebk.me/MOOC.owl#Course"/>
</rdf:Description>
Fig. 8. Sample of edX course data in RDF/XML

 Udacity follows the same subject URI scheme as
Coursera and edX but with the course ID provided by Udacity.
Similar to edX, instructors and sessions do not have their own
IDs. We once again use the course IDs in place of instructor
and session IDs for their subject URIs. We do not assign these
course IDs to Session_ID data properties however; this is to
avoid any conflicts in future SPARQL queries.

<rdf:Description rdf:about="http://sebk.me/MOOC.owl#udacity_course_cs259">
 <Recommended_Background><p>Basic knowledge of programming and Python
at the level of Udacity CS101 or better is required. Basic understanding of Object-
oriented programming is helpful.</p></Recommended_Background>
 <hasCategory>http://sebk.me/MOOC.owl#category_12</hasCategory>
 <hasSession>http://sebk.me/MOOC.owl#udacity_session_cs259</hasSession>
 <schema:name>Software_Debugging</schema:name>
 <Course_ID>cs259</Course_ID>
 <rdf:type rdf:resource="http://sebk.me/MOOC.owl#Course"/>
 <schema:inLanguage>English</schema:inLanguage>
 <schema:timeRequired>Assumes 6hr/wk</schema:timeRequired>
 <schema:about><div>
<p>In this class you will learn how to debug programs systematically, how to
automate the debugging process and build several automated debugging tools in
Python.</p>
</div>Why Take This Course?<div>
<p>At the end of this course you will have a solid understanding about systematic
debugging, will know how to automate debugging and will have built several functional
debugging tools in Python.</p>
</div>Prerequisites and
Requirements<div>
<p>Basic knowledge of programming and Python at the level of Udacity CS101 or
better is required. Basic understanding of Object-oriented programming is
helpful.</p>
</div><p>See the <a href="https://www.udacity.com/tech-requirements"
target="_blank">Technology Requirements for using
Udacity</p></schema:about>
 <schema:video>http://www.youtube.com/channel/UC0VOktSaVdm </schema:video>
 <isTaughtBy>http://sebk.me/MOOC.owl#udacity_instructor_cs259</isTaughtBy>
</rdf:Description>
Fig. 9. Sample of Udacity course data in RDF/XML

D. UI Screenshots
MOOCLink’s home page, shown in Figure 10, is headed by

a navbar which contains links to “Providers”, “Subjects”, and
“Upcoming” pages. “Providers” drops down into a list of
Coursera, edX, and Udacity links when hovered over. Each of
these pages is a paginated list of courses from their respective
provider. “Subjects” leads to a table of links to our 36
categories. Clicking on one of these retrieves a paginated list of
courses in that category. “Upcoming” is an extension of the
starting soon table featured at the bottom of the home page,
listing courses starting within the next month. The last item on
the navbar is a search bar which retrieves courses by SPARQL
query, an example of which is shown in Figure 14.

The “Course Spotlight” is an image carousel which features
courses that might be popular with average users. Currently it
is a mix of introductory courses we have hand-picked. In the
future we hope to base these courses on statistics incorporated

into our RDF such as how many users have enrolled or
completed a specific course. This will depend on the future
availability of MOOC statistics via provider API or otherwise.

The course images in this carousel are retrieved from
YouTube. The IDs for these videos are taken from our RDF
which collects links to introductory videos. Where an ID is not
provided, a placeholder logo for the provider, such as the
Coursera logo in the rightmost course, is shown. Hovering over
a course prompts links to the MOOCLink course details page
and the introductory video. The course title, provider, start
date, as well as the beginning of the course summary are
provided below the course images.

Below the course spotlight, an image with a quote from
Daphne Koller is shown. On further scrolling (which creates a
parallax effect with the image) the “Starting Soon” section
follows with 7 courses starting in the next month. This is
followed by a link to our SPARQL endpoint and a footer
featuring a brief project description, links to related work as
well as our contact information.

Fig. 10. Screenshot of MOOCLink home page

 Search results are shown in a 4-column image grid as
shown in Figure 11. The images of these courses are retrieved
by the same method as the home page carousel. Courses on the
search results page are filterable by course provider.
Checkboxes are provided below course titles to flag which
courses one would like to compare in more detail. In this
example, the bottom three courses, “Calculus: Single
Variable”, “Preparing for the AP Calculus AB and BC Exams”
and “Principles of Economics with Calculus” are flagged for
comparison.

Fig. 11. Screenshot of search results

 In Figure 12, the table for the comparison of courses is
shown. Information pertaining to each course is displayed as an
“accordion” in which clicking on a property opens the field for
each course being compared allowing for simple detail-by-
detail comparison. Courses are once again filterable by course
provider and hovering over the course image brings up a link to
its corresponding MOOCLink “course details” page as well as
a link to enroll in the course.

Fig 12. Screenshot of course comparison table

 A course page on MOOCLink, shown in Figure 13, is
headed by the course title and start date as well as a
breadcrumb for navigation. Next to the introductory video is
the same accordion found on the course comparison table,
listing relevant course properties. Below the video is the full
course summary and a link to enroll in the course on its
provider’s webpage.

Fig 13. Screenshot of course details page

 In order to generate search results and retrieve course
properties from our RDF, SPARQL queries are performed.
These are called on our application server using Jena’s ARQ
API which queries the RDF from a separate Fuseki Server.
Currently we search for names in the RDF that contain the
words searched using regular expressions. Figure 14 illustrates
a search for “calculus”. All items in the RDF are selected
where they are of type mooc:Course and every course with a
schema:name or course title containing “calculus” (ignoring
case as defined by the regular expression filter) is returned.

PREFIX mooc: <http://sebk.me/MOOC.owl#>
PREFIX schema: <http://schema.org/>
 SELECT * WHERE {
 ?course rdf:type mooc:Course.
 ?course schema:name ?iname.
 FILTER (regex(?iname, "calculus", "i")).
 }

Fig. 14. Sample of a SPARQL query behind MOOCLink search

 Although keyword search of course titles may yield
relevant results, there is more work to be done in order to take
advantage of the more extensive searches we can perform with
SPARQL. For example, we might want to know what courses
cover writing business plans. There are few courses which
concentrate around business plan writing or have “business
plan” in the title, although many business courses might have
lectures which cover it. Because our MOOC RDF contains

syllabi details, we can perform a SPARQL query which
returns any course that mentions writing business plans
allowing the user to compare relevant courses side-by-side to
see that they enroll in the course that covers this topic most
extensively. We aim to incorporate more robust search such as
this example in future iterations of MOOCLink.

V. CONCLUSION AND FUTURE WORK
We have presented an extension of Schema.org’s Linked

Data vocabulary, which incorporates types and properties
found in online courses. The extended ontology allows for
assignment of data properties relevant to MOOCs as well as
object properties which link MOOC sessions, course details,
categories and instructors together.

Also presented is our approach to collecting and generating
Linked Data from three MOOC providers: Coursera, edX, and
Udacity. Using Coursera’s API and two Scrapy crawlers for
edX and Udacity, we collect MOOC data in JSON and convert
it to RDF with Apache Jena.

We describe a prototype implementation of MOOCLink, a
web application which utilizes the Linked MOOC Data to
allow users to discover and compare similar online courses. A
semantic web stack of Apache Tomcat as the web server and
servlet container, Fuseki as the SPARQL server, TDB as the
RDF store, and JavaServer Pages and Java Servlets to
dynamically create webpages is proposed to achieve this. The
functionality as well as the look and feel of the application are
highlighted with UI screenshots.

Our future work will focus on: incorporating demographic
data, reviews, developing an item pipeline for our crawlers,
automating website updates, enabling user profiles, course
tracks, natural language processing of syllabi and summaries
for more robust data and search.

ACKNOWLEDGMENTS
I would like to thank my mentor, Professor Srividya Bansal

of Arizona State University for her continual support. This
work is supported in part by the Distributed Research
Experience for Undergraduates (DREU) program, a joint
project of the CRA Committee on the Status of Women in
Computing Research (CRA-W) and the Coalition to Diversify
Computing (CDC).

REFERENCES
[1] Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so

far. International journal on semantic web and information systems,
5(3), 1-22. Chicago

[2] Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic
web. Scientific american, 284(5), 28-37.

[3] Dietze, S., Yu, H. Q., Giordano, D., Kaldoudi, E., Dovrolis, N., & Taibi,
D. (2012, March). Linked Education: interlinking educational Resources
and the Web of Data. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing (pp. 366-371). ACM.

[4] Linked Up Challenge. (n.d.). LinkedUp Challenge. Retrieved July 22,
2014, from http://linkedup-challenge.org/

[5] Pappano, L. (2012). The Year of the MOOC. The New York Times,
2(12), 2012. Chicago

[6] Coursera Catalog API. (n.d.). - Coursera Technology. Retrieved July 22,
2014, from https://tech.coursera.org/app-platform/catalog/

[7] Klyne, G., & Carroll, J. J. (2006). Resource description framework
(RDF): Concepts and abstract syntax.

[8] Pérez, J., Arenas, M., & Gutierrez, C. (2006). Semantics and
Complexity of SPARQL. In The Semantic Web-ISWC 2006 (pp. 30-43).
Springer Berlin Heidelberg.

[9] Nilsson, Mikael, Matthias Palmér, and Jan Brase. "The LOM RDF
binding: principles and implementation." Proceedings of the Third
Annual ARIADNE conference, Leuven Belgium, 2003. 2003.

[10] IEEE Learning Object Metadata RDF binding. (n.d.). IEEE Learning
Object Metadata RDF Binding. Retrieved July 22, 2014, from
http://kmr.nada.kth.se/static/ims/md-lomrdf.html

[11] Bohl, O., Scheuhase, J., Sengler, R., & Winand, U. (2002, December).
The sharable content object reference model (SCORM)-a critical review.
In Computers in education, 2002. proceedings. international conference
on (pp. 950-951). IEEE. Chicago

[12] Schema.rdfs.org: a mapping of Schema.org to RDF. (n.d.). - Home.
Retrieved July 22, 2014, from http://schema.rdfs.org/

[13] Learning Resource Metadata Initiative. (2013, April 9). :: World’s
Leading Search Engines Recognize LRMI as Education Metadata
Standard. Retrieved July 22, 2014, from http://www.lrmi.net/worlds-
leading-search-engines-recognize-lrmi-as-education-metadata-standard/

[14] Coursera. (n.d.). Retrieved July 22, 2014, from http://coursera.org/
[15] edX. (n.d.). Retrieved July 22, 2014, from http://edx.org/.
[16] Udacity. (n.d.). Retrieved July 22, 2014, from http://udacity.com/
[17] Learning Resource Metadata Initiative. (n.d.). :: The Specification.

Retrieved July 22, 2014, from http://www.lrmi.net/the-specification/

[18] A free, open-source ontology editor and framework for building
intelligent systems. (n.d.). protégé. Retrieved July 22, 2014, from
http://protege.stanford.edu/

[19] McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology
language overview. W3C recommendation, 10(10), 2004.

[20] RDF Schema 1.1. (n.d.). RDF Schema 1.1. Retrieved July 23, 2014,
from http://www.w3.org/TR/rdf-schema/

[21] Requests: HTTP for Humans. (n.d.). Requests: HTTP for Humans —
Requests 2.3.0 documentation. Retrieved July 22, 2014, from
http://docs.python-requests.org/en/latest/

[22] Scrapy | An open source web scraping framework for Python. (n.d.).
Scrapy | An open source web scraping framework for Python. Retrieved
July 22, 2014, from http://scrapy.org/

[23] Apache Jena. (n.d.). Apache Jena. Retrieved July 22, 2014, from
https://jena.apache.org/

[24] google-gson - A Java library to convert JSON to Java objects and vice-
versa - Google Project Hosting. (n.d.). google-gson - A Java library to
convert JSON to Java objects and vice-versa - Google Project Hosting.
Retrieved July 22, 2014, from http://code.google.com/p/google-gson/

[25] Bootstrap. (n.d.). Bootstrap. Retrieved July 22, 2014, from
http://getbootstrap.com/

[26] TDB Architecture. (n.d.). Apache Jena. Retrieved July 22, 2014, from
https://jena.apache.org/documentation/tdb/architecture.html

[27] Google App Engine. (n.d.). URL Fetch API Overview. Retrieved July 22
2014, from https://developers.google.com/appengine/docs/java/urlfetch

[28] HTTP Authentication in ARQ. (n.d.). Apache Jena -. Retrieved July 22,
2014, from http://jena.apache.org/documentation/query/http-auth.html

