Package Type System for Sketch

Santiago Gonzalez

Summer 2014

1 Type Rules

The following rules ignore global field declarations. They are always private.
Ancestors(P) = {Pa|P impl P4V (3Pg P impl Pg A P4 € Ancestor(Pg))}
Typechecking program (root)

VP{F;S} € Prog Proght P
I'+ Prog

Interfaces for package hierarchies !

S] g Sp F[g Fp V{Pc{Fc; Sc}’PC impl Pp} = I[{Fc;SC}/{Fp; SPH E PC

I{Fr; S1} € Pp{Fp;Sp}
Typechecking packages

Vf e F (Prog,P)- f Vse&S (Prog,P)t s
Prog - P{F; S}

Typechecking functions

(Prog,P)-b (Prog,P)F-71 V71, € args (Prog,P)F 1,
(Prog, P) - 7 name(args) {b}

'Note: when we say a function is an element of a function set, we use its signature (i.e. the function’s
name, return type, and arguments) to differentiate it, not just its name. However, two different return types
/ argument types, 71 and 72, from otherwise same signatured functions, fi and f2, should be considered
the same if fo’s containing package is a subpackage of fi’s containing package (i.e. f2 is a more specific

implementation of f1) and 72’s containing package is a subpackage of 71’s containing package.

Typechecking function call (explicit package)

Q{Fg;Sq} P{Fp;Sp} Q#P HF;Si}EQ Q¢ An.(P) P ¢ An.(Q) foo € Fy
(Prog, P) F foo@Q()

Typechecking function call (from unspecified package)

P{Fp;Sp} foo¢ Fp 3Q,fooc Fy VM #Q,foo¢ Fyy I{F;S1}CQ fooe€ Fr
(Prog, P) F foo()

Typechecking function call (from within same package) // takes precedence over

unspecified package rule

P{FP;SP} fOO e Fp
(Prog, P) F foo()

Typechecking struct use (from within same package) // takes precedence over unspecified

package rule
P{FP;SP} Bar € Sp

(Prog,P)FBarb="---
Typechecking struct use (from unspecified package)

P{Fp;Sp} Bar ¢ Sp 3Q,Bar € Sg YM # Q,Bar ¢ Sy I{Fr;S;} CQ Bar e Sy
(Prog,P)FBarb=---

Typechecking struct use (explicit package)

Q{Fg:So) P{FriSr} Q#P I{FiSHEQ Q¢ An(P) P ¢ An(Q) Bare s
(Prog, P) F Bar@Q b = - --

Typechecking struct field access (to allow utility packages with fully public structs)

Q{Fg;Sq} P{Fp;Sp} Q#P st:17 17€Sg VM #Q,(M impl Q)ANQ impl M)
(Prog, P) F st.field

Typechecking struct field access (from within same package)

P{Fp;Sp} st:t T€Sp
(Prog, P) F st.field

1.1 Reasoning for Conservative Function/Struct Usage Allowances

We want to avoid situations where the removal of a package that is not being used causes
something else to not work. For example, consider a program with package A, B, and C
where packages B and C are implementations of A. These packages are all in separate files.
The program’s main file contains a method where a certain function in B is used and this

file contains includes for A, B, and C. The removal of the include for C would modify certain
behaviors (i.e. private/publicness of certain functions) that would cause the program to
behave incorrectly without the programmer’s knowledge. The inclusion of C introduces
new constraints into such behaviors that removes ambiguities. These conservative usage
allowances of functions/structs, from unspecified packages, are in place to prevent such
situations.

