
Package Type System for Sketch

Santiago Gonzalez

Summer 2014

1 Type Rules

The following rules ignore global field declarations. They are always private.

Ancestors(P ) = {PA|P impl PA ∨ (∃PB P impl PB ∧ PA ∈ Ancestor(PB))}

Typechecking program (root)

∀P{F ;S} ∈ Prog Prog ` P
Γ ` Prog

Interfaces for package hierarchies 1

SI ⊆ SP FI ⊆ FP ∀{PC{FC ;SC}|PC impl Pp} ⇒ I[{FC ;SC}/{FP ;SP }] v PC

I{FI ;SI} v PP {FP ;SP }

Typechecking packages

∀f ∈ F (Prog, P ) ` f ∀s ∈ S (Prog, P ) ` s
Prog ` P{F ;S}

Typechecking functions

(Prog, P ) ` b (Prog, P ) ` τ ∀τa ∈ args (Prog, P ) ` τa
(Prog, P ) ` τ name(args) {b}

1Note: when we say a function is an element of a function set, we use its signature (i.e. the function’s
name, return type, and arguments) to differentiate it, not just its name. However, two different return types
/ argument types, τ1 and τ2, from otherwise same signatured functions, f1 and f2, should be considered
the same if f2’s containing package is a subpackage of f1’s containing package (i.e. f2 is a more specific
implementation of f1) and τ2’s containing package is a subpackage of τ1’s containing package.

1



Typechecking function call (explicit package)

Q{FQ;SQ} P{FP ;SP } Q 6= P I{FI ;SI} v Q Q /∈ An.(P ) P /∈ An.(Q) foo ∈ FI

(Prog, P ) ` foo@Q()

Typechecking function call (from unspecified package)

P{FP ;SP } foo /∈ FP ∃Q, foo ∈ FQ ∀M 6= Q, foo /∈ FM I{FI ;SI} v Q foo ∈ FI

(Prog, P ) ` foo()

Typechecking function call (from within same package) // takes precedence over

unspecified package rule
P{FP ;SP } foo ∈ FP

(Prog, P ) ` foo()

Typechecking struct use (from within same package) // takes precedence over unspecified

package rule
P{FP ;SP } Bar ∈ SP
(Prog, P ) ` Bar b = · · ·

Typechecking struct use (from unspecified package)

P{FP ;SP } Bar /∈ SP ∃Q,Bar ∈ SQ ∀M 6= Q,Bar /∈ SM I{FI ;SI} v Q Bar ∈ SI
(Prog, P ) ` Bar b = · · ·

Typechecking struct use (explicit package)

Q{FQ;SQ} P{FP ;SP } Q 6= P I{FI ;SI} v Q Q /∈ An.(P ) P /∈ An.(Q) Bar ∈ SI
(Prog, P ) ` Bar@Q b = · · ·

Typechecking struct field access (to allow utility packages with fully public structs)

Q{FQ;SQ} P{FP ;SP } Q 6= P st : τ τ ∈ SQ ∀M 6= Q, !(M impl Q)∧!(Q impl M)

(Prog, P ) ` st.field

Typechecking struct field access (from within same package)

P{FP ;SP } st : t τ ∈ SP
(Prog, P ) ` st.field

1.1 Reasoning for Conservative Function/Struct Usage Allowances

We want to avoid situations where the removal of a package that is not being used causes
something else to not work. For example, consider a program with package A, B, and C
where packages B and C are implementations of A. These packages are all in separate files.
The program’s main file contains a method where a certain function in B is used and this

2



file contains includes for A, B, and C. The removal of the include for C would modify certain
behaviors (i.e. private/publicness of certain functions) that would cause the program to
behave incorrectly without the programmer’s knowledge. The inclusion of C introduces
new constraints into such behaviors that removes ambiguities. These conservative usage
allowances of functions/structs, from unspecified packages, are in place to prevent such
situations.

3


