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1. RESEARCH PROBLEM
A common hurdle in the field of constraint-based synthesis
involves reasoning about large code bases efficiently. Of-
ten, efficient implementations of certain constructs, such as
data structures, are more complex and difficult to reason
about, for both the synthesizer and the programmer, than
equivalent, less-efficient implementations. That is, we want
the synthesizer to be able capable of reasoning a complex
implementation by representing it in a simpler form that
facilitates reasoning.

Consider that a programmer has relatively large and com-
plex program which uses sets (i.e. unordered collections) in
several places and is written for a synthesis based compiler.
Sets can typically be implemented in a variety of different
ways, each suited to different types of problems. In some
cases, the programmer knows that a tree-based set imple-
mentation would be ideal. However, in other cases, a hash
table based implementation would be best, but the program-
mer is unsure which set implementation would be optimal,
so he (erroneously) chooses the tree-based implementation.
Upon compilation, the synthesizer takes a very long time
to reason about the program, due to the complexity of the
tree-based set. A system which could use a simpler, equiv-
alent set implementation for reasoning while still using the
efficient implementation, which could potentially be inferred
from analysis, for the compiled program would be very ben-
eficial.

2. BACKGROUND
The Computer Aided Programming group at the Massachusetts
Institute of Technology (MIT) has been working on a C-like,
constraint-based synthesis programming language, named
Sketch for several years. Sketch relies on a SAT solver and
a program synthesizer based on a counterexample-guided in-
ductive synthesis (CEGIS) algorithm. CEGIS converges on
a correct solution by iteratively generating potential imple-
mentations which are then run though a verifier, a better
potential candidate can then be produced from counterex-

ample traces upon failure. [10]

Sketch has demonstrated the applicability of constraint-
based synthesis to a variety of programming problems, in-
cluding automated grading for programming assignments
[9], machine learning problems such as recommendations
within social media [2], and optimization of database-backed
applications which use an object-relational mapping layer
[3]. Sketch’s versatility and flexibility arise from its easy to
understand programming model (i.e. the programmer does
not need to be well versed in verification proofs), its ability
to run on nearly any system due to its cross-platform Java
and C++ codebase, and its syntactic similarity to C.

3. APPROACH
We introduce a solution to the problem of reasoning about
complex structures by extending the Sketch programming
language to include a new programming construct called the
package, which has the ability to define subtype relations
between related packages. Such subtype relations allow the
synthesizer to use an alternative package for analysis which
has a simpler, equivalent implementation, while still using
the more efficient package for the compiled code. Packages
can have hierarchical relationships with each other. As such,
packages have similar behavior to conventional classes in
object-oriented programming languages, such as Java, with
several key differences.

While packages have the concept of inheritance and poly-
morphism, they are not instantiated like classes. Packages
serve to contain code, and as such, packages vend a variety
of functions and C-like structs, which can be instantiated.

The availability of a function or struct (i.e. whether it is pri-
vate to the package or public to the entire program) within
a package is determined by wether all child packages imple-
ment that function or struct. For example, assume there are
packages A and B, such that B <: A, and A contains a func-
tion f1, while B contains a function f2; f1 would be private
to its package unless B also implemented while f2 is pub-
lic since B has no children. Note, that child packages can
introduce new functionality to a package, much like classes.

Additionally, a package’s structs can not be instantiated
from outside of a package, necessitating the use of factory
functions, and such a struct’s fields can only be accessed
from within that struct’s containing package. This enforces
the use of setter and getter functions to access a struct’s



data, allowing different, replaceable struct implementations.
These semantics essentially simplify and allow the use of
structs as data objects whose exact implementations are
unknown by the programmer. Furthermore, the synthe-
sizer has the assurance that instances of a struct can be re-
placed with other package’s implementations, provided that
the packages vend equivalent behavior.

Packages are best used to represent collections of code with
very similar behaviors and differing implementations. Essen-
tially, the Liskov Substitution Principle (LSP) [6] is enforced
for both parent-child and child-parent package relationships.

Packages with no parent package and no children packages,
termed utility packages, are essentially simple containers for
code, much like namespaces and packages in C++ and Java,
respectively. Utility packages allow full access to structs’
fields since it is impossible for ambiguities and type conflicts
to arise, due to the lack of descendants.

In order to be able to replace a package with one of its de-
scendants, both packages must be verified to be functionally
equivalent for a given program. We plan to accomplish such
verification through the use of a most general client that
aims to generalize the potential usage instances of a pack-
age. We intend to construct the most general client through
a hybrid approach: (1) analyzing the program in which the
package is used, and (2) creating random function call se-
quences based on information gathered from program anal-
ysis. Such an approach would allow for a looser definition of
equivalency, one that is more specific to the use case and less
general. Analysis of a program’s package use cases would re-
duce the quantity of function call sequences that need to be
tested.

As a contrived example, consider that a programmer has a
program with packages A and B, such that B <: A, and
both A and B contains a function f1 that performs an oper-
ation on a number. Assume that B has a more efficient, and
complex, implementation that works with all number inputs,
while A’s implementation only works with even number in-
puts. In the most general sense, A and B are not equivalent
since they fail verification with odd number inputs. How-
ever, if the program only uses B with even numbers, the two
packages can be considered equivalent for the program.

4. RESULTS AND CONTRIBUTIONS
We have fully defined and integrated the type semantics for
the package system into the Sketch compiler. The package
system’s type rules have been formalized in standard nota-
tion as described in [1]. Package abstract syntax tree (AST)
nodes have been extended from simple code containers to
support inheritance, public function and struct interfaces,
and the parser grammar has been extended to support the
Java-like syntax for declaring parent packages. Furthermore,
the package system’s type-checking has been implemented as
a new compiler pass using a visitor pattern as opposed to
being integrated into the preexisting type-checking compiler
pass.

Due to the slightly unconventional nature of packages, sev-
eral of the type rules have unique formulations. For exam-
ple, the type-checking rule for determining the ambiguity of

a function call avoids strange, unintuitive situations where
the removal of an unused package from the program changes
the package from which function is used in an unspecified
function call. Such scenarios can arise due to the nature of
child packages which allows them to modify a parent pack-
age’s function’s visibility. These would bring about subtle,
difficult to debug issues that result in the program’s logic
changing, hence eliciting the more conservative rule.

Continuing work involves the creation of a most general
client for a given program to verify package equivalence. Ad-
ditionally, efforts will go towards modifying the synthesizer
to reason with simpler implementations and extensive test-
ing, possibly with string libraries. Future work could poten-
tially include modifications to the compiler in order to allow
it to deduce which package implementation is most efficient
for a given usage instance.

5. RELATED WORK
There has been significant work by researchers at ETH Zürich
on using the Eiffel programming language with contracts [4]
as an alternative approach to this problem; namely, in the
field of program verification. [8] The design by contract
programming model is a way to achieve modularity and lo-
cal reasoning by having the programmer write very detailed
contracts. Specifically, model-based contracts which sup-
port the verification of software modules. [7] Contracts are
invariant specifications which cover pre-conditions, known
as obligations, and post-conditions, known as benefits. Pro-
ponents for design by contract programming argue that rig-
orous functionality specifications help to bring successful,
reusable software to fruition. [5]
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