
Physical Privacy Interfaces for Remote Presence Systems

Authors

Student
Suzanne Dazo

Berea College

Berea, KY, USA

suzanne_dazo14@berea.edu

Mentor
Dr. Cindy Grimm

Oregon State University

Corvallis, OR, USA

grimmc@onid.oregonstate.edu

ABSTRACT

Research in the Applied Robotics Lab at Oregon State

University focused on privacy interfaces for robots

navigated by a remote operator in a user’s home.

Privacy expectations and its components are defined,

and this definition is used to develop three applications

for both a local user and a remote operator using ROS.

The first application, Remote Nav, is a user interface

used to navigate a Remote Presence System. The

second is Privacy Zones, which the local user can use

to specify areas that should remain private or public.

Both applications are functional but are pending testing

in a user study or similar testing environment.

INTRODUCTION

Over the summer, I worked in the Applied Robotics lab

at Oregon State University under the mentorship of Dr.

Cindy Grimm. Research in the lab focused mainly on

human-robot interaction under Dr. Bill Smart. The goal

of the lab is to improve the interactions between robots

and people and determining how they can be useful.

Remote Presence Systems (RPS) are systems that allow

a remote operator to be virtually present in another

location. One example would be the Personal Roving

Presence (PRoP) Project [4], which is a mobile robot

that navigates the home of a local user. It has the ability

to interact with the people that it comes across.

Expanding upon this, an RPS could also have to ability

to interact with objects in the environment.

With the introduction of these RPS, there are also

privacy concerns that are raised. A remote operator can

point the camera in any direction, and the RPS can be

present anywhere in the space that it can physically

access. The purpose of this interface project was to

develop a solution for specifying privacy in the space

of the local user, as well as upholding that privacy in

the context of what the remote operator can do.

Overall, our goal will be to meet the privacy

expectations of the local user, and holding up that

standard when the remote operator controls the RPS.

This project was the foundation for further work with

privacy interfaces which may include future user

studies and expansion of the original capabilities of the

applications.

BACKGROUND

To best understand how we can uphold the privacy

expectations of the local user, we should define what

those privacy expectations should be. This involves the

privacy type, or what the restrictions are on the RPS,

and the privacy context which are the conditions under

which the privacy type is enforced. This should be

applicable with a wide variety of tasks. In developing

these applications, various tasks were considered in

order to meet these requirements. The privacy type that

was focused on in my research was physical privacy,

which deals with where the RPS can go and what it can

interact with. In the context of this project, the goal is

limiting where it can go. This falls under two

categories:

Can’t Enter Area – The RPS cannot enter a “private”

space, and would navigate around such areas. The RPS

would refuse requests of navigation goals into private

areas.

Can’t Leave Area – The RPS cannot leave a “public”

space, and would not navigate outside of this space.

Ideally, the result of the remote operator violating these

privacy types would be removing control from the

remote operator and autonomously navigating until the

RPS is in a valid location.

There are various privacy contexts such as temporal

time constraints, and the presence of a person or object

in the room. However, there are only two privacy

contexts that concern us for this project.

Spatial- The privacy type is enforced when the RPS in

in a particular room or a defined area.

Remote Operator- The privacy type is enforced

depending on who the remote operator is. This can vary

based on the identity of the operator or the role/task of

the operator. For example, an RPS controlled by a

plumber expected to work in the bathroom would have

different constraints compared to an RPS controlled by

a home inspector (who would probably have the

freedom to explore the entire home).

APPLICATION

The development of this project involved two phases

due to the fact that there are two types of users involved

in physical privacy. The Remote Nav package was

developed for the remote operator of the RPS. The

Privacy Zones application is intended for the local user.

Both of these programs were developed using a

combination of Python, PyQt, and various packages

included in ROS[11, 8, 5] and can be found on the

Oregon State Robotics Github[1].

Figure 1: A TurtleBot(left) and PR2(right)

Framework
The Robot Operating System, or ROS, is used across

multiple platforms to provide functionality to various

robots. It is open source, and allows for the publishing

of developed packages for use by other developers.

This allows for rapid use of new research to enhance

the development of future robot applications. As of this

writing, the current version of ROS is Hydro, but for

compatibility reasons, ROS Groovy was used for

development.

All of our applications should work in any version of

Linux that can also support ROS. We have worked

with prototyping our applications on two robots, the

PR2 and the TurtleBot (Figure 1). Some major

differences between the PR2 and the TurtleBot are that

the TurtleBot runs on a single base and can move

forward, backwards, and rotate left and right. It has a

single Kinect several inches above the base which is

where it obtains depth and visual information. The PR2

is much more robust with a base (Figure 1, the bottom

of the robot) than has wheels that can move forward,

backwards, left, and right as well as rotate. It also has

a series of sensors on the head, which includes a Kinect

and separate stereoscopic cameras. The head can move

separately from the base and can look left, right, up,

and down. A challenge here is to create an interface that

has the same controls between both robots, but also

allows both to have proper mapping between the UI

controls and the real-world movements.

Specifying Physical Privacy with Privacy
Zones

Figure 2: The Privacy Zones Interface with the floor

plan for an example home.

The Privacy Zones

application allows the

local user to designate

what areas in the home are

public, private, or neutral.

By clicking on this

semantic map, points are Figure 3: Editing points

drawn at the point where the user has clicked. When

enough points have been specified, the application will

automatically lasso around the area to show the user

what they have selected. This is similar to the behavior

of the Polygonal lasso tool in Adobe Photoshop[10].

These individual points can be dragged to edit the

selected area and further fine-tune a selection (Figure

3). When the user is done specifying an area, “Save

Zone” converts those points to a zone and indicates its

current privacy setting:

Green – The RPS will treat this area as public.

Red – The RPS will treat this area as private.

Gray – The RPS will treat this area as neutral, and it is

only for labelling purposes until it is edited to become

either public or private.

Due to the fact that there may be multiple remote

operators with different tasks, the interface allows for

the saving of these collection of zones. For example,

Figure 2 demonstrates the Privacy Zones interface with

the bedroom and bathroom as private zones. A new file

could be created with a different privacy setting for a

different remote operator. If the user would like to

change an already existing map file, clicking “Import

Map Data” would load a save file for further editing or

review.

Figure 4: Map Registration finds the relation between

the semantic map data and the real-world coordinates

of the SLAM map.

An interesting problem is that the map that a user might

understand is drastically different from the SLAM map

a robot uses to navigate a space [6, 7]. SLAM maps,

due to being a compilation of laser scan data, may be

crooked, have jagged edges, and do not offer any

identification of what rooms or furniture are in an area.

Because of this, we also have decided to work with

1 This was mainly developed by Penn Biggs, another REU student, with the UI

developed by me. More information can be found on the OSU Robotics Wiki[1]

semantic maps that a user can understand.

The intermediate step between the zones created by the

local user with Privacy Zones and the navigation

involves converting the coordinates of the image from

the semantic map used into real-world coordinates for

use by the RPS. Map Registration [1] (Figure 4) allows

any user with knowledge of the space (this does not

have to be the remote operator or the local user) to

convert the points of the semantic map into the SLAM

map and saves the converted points to a file.

Navigation of the RPS using Remote Nav

Figure 5 The Remote Nav Interface with the PR2

Figure 5 demonstrates the current iteration of the

Remote Nav interface which allows a robot to navigate

a room. There are two input feeds. The left feed is the

semantic map with a robot model placed on the map.

This map can be zoomed in and rotated to provide

better understanding for the user when navigating. A

cone of vision is also projected from the robot model,

demonstrating the direction the head is currently

facing. On the right side is a camera feed from the

Kinect camera to allow the navigator of the RPS to see

the environment in order to complete a task.

To prevent the robot from backing up into something it

cannot see or detect with its laser scanners, the robot is

only allowed to move along a pre-programmed track as

of now. Clicking the up arrow will move the robot in

the direction it is facing along this track. Clicking the

rotate button will cause the robot to turn around on the

track so it may return to a previous location.

There are several key differences between a TurtleBot

and PR2 with Remote Nav. First of all, a TurtleBot’s

Kinect camera is attached to the base, so all movements

will also move the camera. The left and right buttons in

turn would cause the TurtleBot to rotate in place, while

on a PR2 it will cause the robot to look left and right

with the head, while keeping the base in the same

position. The reason for this is that a TurtleBot is

significantly smaller than a PR2 and rotating in place is

less likely to cause an accidental collision than if the

PR2 were to perform the same action.

The “Look Forward” button acts as a reset position. For

the PR2, it will reset the head to face forward, and for

the TurtleBot it will rotate it to be parallel with the pre-

programmed track that it will follow.

The purpose of this interface was to allow for easy

navigation of a PR2 or TurtleBot that did not involve

using a joystick or keyboard control, provided enough

information for navigation (a map and visual data) and

was safe for the robot. There should be little room for

user error as far as navigating the robot into a

dangerous or damaging situation, and it should

automatically avoid obstacles such as furniture.

CONCLUSION AND FUTURE WORK

Expanding Functionality

Although the Privacy Zones and Remote Nav

applications are meant for the local user and remote

navigator respectively, they do not yet form a cohesive

unit. As of this writing, Remote Nav does not yet pull

the zone data generated by Privacy Zones, and this

will be a major next step to ensure that navigation can

uphold the privacy expectations of the local user. This

will involve manipulating costmap[9] data so that the

robot will not choose to navigate into an area that does

not conform to a privacy expectation. Special care

will need to be taken that the remote operator cannot

manipulate these zones to help preserve the privacy of

the local user.

As far as privacy expectations, types, and context

goes, the Privacy Zones interface can be expanded to

allow for more privacy contexts. This could involve

adding a time parameter (ex: a public zone becomes

private after 5pm) or other such rules.

User Studies

Pilot testing of these interfaces and testing of how

users interact with these interfaces could be done.

Does upholding a privacy expectation reduce task

performance of the RPS? How does a local user trust

that the privacy that they expect is being upheld?

These are a few of the questions that can be answered

with future research and user studies.

Beyond Physical Privacy

Privacy types extend beyond simply where an RPS

can go. The next steps, especially with the PR2, can

involve what the RPS can interact with (move/touch).

In fact, privacy types expand beyond even physical

privacy. Some work in Dr. Smart’s lab involves video

filters to also handle visual privacy [2, 3]. Combining

these filters with the physical privacy work seen here

can eventually create an all-encompassing privacy

interface that we will be able to test with a RPS.

References

[1] Privacy Interfaces, (2014), GitHub repository, https://github.com/OSUrobotics/Privacy-GUI

[2] Daniel A. Lazewatsky and William D. Smart. An inexpensive robot platform for teleoperation and

experimentation. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), pages 1211–1216, 2011.

[3] Daniel A. Lazewatsky, Bogumil Giertler, Martha Witick, Leah Perlmutter, Bruce A. Maxwell, and

William D. Smart. Context-aware video compression for mobile robots. In Proceedings of the IEEE/RSJ

International Conference on Robots and Systems (IROS 2011), pages 4115–4120, San Francisco, CA,

2011.

[4] Eric Paulos and John Canny. Social tele-embodiment: Understanding presence. Autonomous Robots,

11:87–95, 2001.

[5] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully B. Foote, Jeremy Leibs, Rob Wheeler,

and Andrew Y. Ng. ROS: An open-source robot operating system. In ICRA 2009 Workshop on Open

Source Software in Robotics, Kobe, Japan, 2009.

[6] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization for mobile robots.

Artificial Intelligence, 128(1-2):99–141, 2000.

[7] ROS Navigation Package, (2014), GitHub repository, https://github.com/ros-planning/navigation

[8] Qt Project. (n.d.). Retrieved August 20, 2014, http://qt-project.org/

[9] Costmap 2D Package Summary - ROS Wiki. (2014). Retrieved August 20, 2014,

http://wiki.ros.org/costmap_2d

[10] Photoshop Help | Selecting with the lasso tools. (n.d.). Retrieved August 20, 2014, from

http://helpx.adobe.com/photoshop/using/selecting-lasso

tools.html#select_with_the_polygonal_lasso_tool

[11] Python Software Foundation. (n.d.). Python. Retrieved August 20, 2014, from https://www.python.org/

https://github.com/OSUrobotics/Privacy-GUI
https://github.com/ros-planning/navigation
http://qt-project.org/
http://wiki.ros.org/costmap_2d

