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Abstract
This project serves as a gestural interface for searching a motion
capture database. This system is intended to handle the gestures
of a wide range of users employing algorithms that were trained
on gestures identified in a user study. With this system, users
can act out gestures in front of a natural interaction device,
which will trigger different behaviors of an on-screen character.
This inexpensive system captures movements using a Microsoft
Kinect or similar sensor. A blob tracking method is used in
conjunction with hidden Markov models (HMMs) to recognize
the motions to be retrieved from a motion capture database and
performed by an on-screen avatar.

1 Introduction
The system presented in this paper uses data from a Microsoft
Kinect receiver to control an on-screen avatar based on
recognized motions. When given a gesture that it recognizes,
the system will search the Carnegie Mellon University motion
capture database [1] to find a clip pertaining to that motion. The
action will then be performed by a character rendered in the user
interface.

1.1 Motivation
As video game consoles and devices created for these consoles
continue to evolve, new ideas are conceived which allow
users to interact with these systems in new ways. The
Microsoft Kinect provides developers with access to visual
information through an RGB camera and depth sensor. With
this information, developers can create unique interfaces that
allow people to make use of them to manipulate on-screen data
in an inexpensive and easy to use setting.

1.2 Previous Work
There have been many projects in which puppeteering and
motion capture databases have been used to facilitate on-screen
animations. In [2], the authors created a system in which a
user could specify a chain of motions in one of several different
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ways to control an on-screen avatar. They introduced a unique
structure, a motion cluster, connecting similar clips from a
motion capture database. Similar techniques are used with
people acting out motions using an inexpensive marker-based
motion capture system in [3] to create simulated motions. In
[4], motions acted out with a doll are used to create on-screen
animations, and in [5], motions performed by a puppet with
sensors in key locations are used to retrieve motion capture data.

The Microsoft Kinect and similar devices have been used in
research to create a variety of applications using puppeteering
and gesture recognition. In [6], the Kinect is used to produce
3D models with hand-held puppets which are scanned by the
Kinect and recorded in a database for subsequent recognition.
These models can then be used to create stories or scenes acted
out by a user with the puppets in front of a Kinect receiver.
The authors of [7] also use a Kinect to track fingertips in the
implementation of a virtual keyboard. They made use of blob
tracking to monitor fingertip location and used a protocol to
send fingertip information to various applications like a virtual
keyboard and on-screen object manipulation. In [8], the Kinect
was used to recognize various sign language gestures.

2 Methods
This system is built with three major components: hand
tracking, gesture recognition, and playback of motion clips.
These components will be discussed in the following
subsections. In Section 2.1 we will first discuss the hardware
setup of the system and how the design of the software was
approached. Subsequently, in Section 2.2, approaches and
methods used for hand tracking will be discussed. Methods
used for gesture recognition and motion retrieval from the
motion capture database will then be discussed in Section 2.3.
Finally, the real-time rendering of the motion capture clips and
the user interface will be discussed in Section 2.4.

2.1 Design and System Set Up
The hardware setup for this system is simply a single Microsoft
Kinect or similar motion receiver whose data is accessed with
OpenNI drivers [9]. The Kinect was the receiver used for testing
the platform and has a resolution of 640x480 and a frame rate
of 30hz [7]. The Kinect does have some distance constraints
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Figure 1: The image on the left shows the one-handed approach
for acting out a marching gesture with their fingers, while the
picture on the left shows a user performing the same gesture
with the two-handed approach.

for data reception as well. The user must maintain a distance
of about three feet from the camera for best results. A user can
have a distance of up to several meters from the receiver while
still being tracked with reasonable accuracy. Moreover, our
system requires that the user’s hands be the closest objects to
the camera for optimal performance. This constraint means that
nothing can be in the Kinect’s line of sight in front of the user’s
hands. Because our system recognizes gestures performed by
the hands, it is best if the Kinect is on the same surface as that on
which their hands are anchored when not performing a gesture.

To aid in the determination of which types of gesture
performance users would be most comfortable with, a small
user study of ten people was conducted to analyze preferences
of people in different age groups. The youngest participant
was seven years old and the oldest was sixty-three. Six of
the participants were male and four were female. Each subject
performed ten gestures corresponding to motions selected from
the motion capture database in two different ways. The first
method was a one-handed approach with fingers acting as the
hands and legs. In the second approach, subjects used both
hands in acting out motions with each hand representing a hand
or a foot, depending on the motion. An example of this can
be seen in Figure 1. There was an unanimous preference of
gesturing with the two-handed approach over using fingers.
However, there were some motions, such as the cartwheel,
that were difficult to perform regardless of whether hands or
fingers were used. We decided that the system should track two
hands for motion retrieval. Five target gestures were chosen
to be extracted from the database using hand motion: running,
jumping, marching, dribbling a basketball and kicking.

2.2 Hand Tracking

The first step of hand tracking was to isolate the hands using
depth segmentation. During the user study, some subjects
were recorded with a Kinect to assess the quality of the depth
segmentation and situations in which it can fail, as seen in
Figure 2. The system proved to be rather successful with depth
thresholding alone. The major cause of failures were when the
subject’s face would be captured by the camera because they
leaned forward. Because of this skin color detection techniques
like those described in [7] and [10] would have likely been

Figure 2: As in Figure 1, these images show the differences of
the two considered approaches for gesture delivery, with one
and two hands. However, this figure shows the two approaches
as seen with depth segmentation.

ineffective for our purposes. As a result, the isolation portion
of hand recognition was limited to depth segmentation. The
responsibility of determining whether objects detected are the
user’s hands was then left to the blob detection process.

For blob detection and tracking, several approaches were
evaluated and considered. Had we chosen to do the one-handed
method in which the user gestures with his or her fingers instead
of both hands, an approach like that used in [8] would have been
employed. However, since we opted to go with the two-handed
approach, a simpler blob detection algorithm was sufficient. In
[7], a blob tracking library is used to track the trajectory of
fingertips. Similarly, in [11], an external library is used for
blob detection and is modified to track blobs based on their
size. The approach in [11] was considered. However, for
that implementation, blobs were captured with a webcam and
maintained a relatively constant size and shape between frames.
In our system, the depth data received through the Kinect can
be noisy and it is common for blobs to change size and shape
between frames. This also implies that the blobs could have
drastically different locations between frames when calculated
by an external source. In addition, we wanted to be able to
track the blobs in three dimensions, which was not part of the
functionality of some third-party libraries.

Furthermore, because our system is intended to be easily
downloaded by users, dependence on external libraries was kept
to a minimum. On a similar note, this system was created with
the purpose of being portable on multiple operating systems,
and some libraries have different dependencies for different
systems and architectures. We observed that some libraries
considered would not even function on certain architectures.
With our system, the only dependencies are the OpenNI drivers
[9] for the computer to be able to interface with an interaction
device like the Kinect.

Because of these matters, along with the notion that we do
not need to know the actual shape of the blob, an efficient and
simplistic approach was taken for blob detection and tracking.
To detect the blobs, a depth map is first created using depth
segmentation based on a threshold that allowed objects the
foreground to be the only objects captured. The closest object
to the camera is found by identifying the minimum depth value
that is recognized and an adjustable threshold is set from there
to isolate the user’s hands. This is the reason, as mentioned in

2



Figure 3: Subsequent to depth segmentation, bounding boxes
are created around each blob to aid in keeping track of the
position.

section 2.1, that the user must ensure that his or her hands are
the closest objects to the receiver.

The depth map then contains the depth value of every pixel
within the threshold and a zero otherwise. The depth map is
then sent to the blob detection method which scans the frame for
likely maximum and minimum edges of the blob for each frame.
In each subsequent frame, the horizontal and vertical distance
from the previous blobs are considered to decide if a pixel with a
nonzero value in the depth map is within one of the blobs being
tracked. This allows the algorithm to disregard noise or another
object temporarily noticed by the sensor. The values in the x
and y axis, along with the depth data reported by the Kinect are
considered for each blob to create a bounding box around the
blob as depicted in Figure 3. Through experimentation, it was
found that the upper-left corner of the bounding box around the
hand was typically the most consistent during gesturing. This
is because the forearm of the user may appear at times beneath
the hand during some gestures, ending up within the threshold.
This causes the lower edge of the box to vary more. Because of
this, the upper-left corner of the bounding box is used to keep
track of the position of the blob in each frame.

As was noticed by the authors of [7], the frame rate of the
Kinect coupled with the ability of a human to move their hands
only a certain distance in between frame captures implies that
there will be some overlap in blob positions over several frames.
We take advantage of this to limit the amount of noise picked
up by the receiver and to ensure that each location is accurate
enough for gesture recognition. An average over several frames
is taken to get the position of each blob in a short interval of
time. Because the Kinect may pick up noise in one single frame
which could make the blob much larger than in adjacent frames,
if values are extreme compared to those in nearby frames, those
values are discarded when calculating the average. Moreover,
all frames in which only one blob, or no blobs are detected
are ignored in the tracking. This heuristic allows the system
to determine which direction each blob moved within each axis

to be considered by the gesture detection algorithm.

2.3 Gesture Recognition and Motion Retrieval

The five target gestures that we chose have some similarities
when performed with two hands. However, we found that
the most noticeable differences are in the vertical component.
The horizontal and depth components are used to determine
the direction of movement, but the vertical component is used
to resolve which gesture was performed by the user. To do
so, this system uses a hidden Markov model (HMM) for each
gesture to determine which motions to retrieve when a gesture is
performed in front of the receiver. To implement the HMMs, we
used the information and approach defined in [12] and described
below.

The creation of the HMMs began with training each model
on its respective gesture. This was done by first initializing
the model, λ = (A,B, π) with random values. In this model,
A is an NxN matrix containing state transition probabilities,
where N is the number of states in the model. B is an
NxM observation probability matrix where M is the number
of possible observations. Finally, π represents the N element
vector which holds the initial state distribution.

With the model initialized, it was given a sequence of T
observations, one for each of forty time steps. In our model,
each observation represents the state of both hands when
observed. Because we are considering the vertical position,
each hand can be going up, going down, or staying still.
The combinations of all positions for both hands yield M = 
possible observations.

We then populated each model, λ = (A,B, π) with values
based on real data with an iterative approach known as the
Baum-Welch algorithm. The approach begins with using the
Forward-Backward, also known as the Viterbi algorithm to
generate two matrices, α, β, and two values annotated by γ, one
representing a gamma and the other a di-gamma. This method
first employs a recurrence relation in the α, or forward pass.

αt(i) = [

N−1∑
j=0

αt−1(j)aji]bi(Ot) (1)

In equation 1, aji represents an element in matrix A at that
index and bi(Ot) represents a value in matrix b in the row i
and in the column representing observation O at time t. This
recurrence relation begins with the base case, α(i) = πibi(O)
for all i from 0 to N-1. This recurrence relation is computed for
all t, from 1 to T-1.

Once the forward pass is complete, the backward, or β pass
can be started. The β pass also uses a recurrence relation, which
has the base case β(i) =  for all i from 0 to N-1 and is defined
as

βt(i) =

N−1∑
j=0

aijbj(Ot+1)βt+1(j) (2)

3



This recurrence relation is computed for all t from T-2, down
to 0. All elements in equation 2 are equivalent to those as
described for equation 1. Finally, the gamma and di-gamma
values can be computed. The gamma value is defined as

γt(i) =
αt(i)βt(i)∑N−1
i=0 αT−1(i)

(3)

Finally, the di-gamma value is defined with

γt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)∑N−1

i=0 αT−1(i)
(4)

From here, the iterative method can update A, B, and π. To
populate π, we compute the following for i from 0 to N-1.

πi = γ0(i) (5)

To update A, we sum the following for i and j from 0 to N-1.

aij =

∑T−2
t=0 γt(i, j)∑T−2
t=0 γt(i)

(6)

Finally, to update the values in B, the following is computed
for i from 0 to N-1 and for k from 0 to M-1.

bj(k) =

∑T−2
t=0 γt(j), whereOt = k∑T−2

t=0 γt(j)
(7)

The iterative algorithm returns to equation 1 if the probability
of the observation performed in the training, given the model,
P (O|λ), does not increase by a set amount. The algorithm will
also terminate if a maximum number of iterations have been
performed. This probability is given by

P (O|λ) =
N−1∑
i=0

αT−1(i). (8)

For each of the five gestures, a model λ = (A,B, π) was
created and saved after training with many samples of given
observations. Once these models are saved, the gesture
recognition could be implemented. The system receives a
sequence of observations, just as in the training. However,
it now uses only the forward procedure, or α to calculate the
matrix α, as in equation 1 for each model λ = (A,B, π). After
this step is complete, the system can compute the probability,
P (O|λ), as given in equation 8. This operations is computed for
each model so that the model with the greatest probability can
be recognized. The gesture associated with the model having
the highest probability is then selected to be displayed to the
user.

2.4 User Interface
When designing the user interface that would be employed
by this system, the file type for the motion capture files
was the first consideration. After reviewing several different
file formats, the Biovision Hierarchy (BVH) file format was

Figure 4: The user interface for communicating with users and
displaying the gestures recognized that are performed.

selected. This choice was made primarily because the file
type itself contains the skeleton information for the character
displayed on-screen as well as the orientation of each joint in
each frame as described in [13]. This makes the file easy to
read and understand and the full motion clip easy to keep track
of when searching the database for a specific clip. The entire
database was available in BVH format in easy to download
bundles from [14].

For rendering the model, an open-source Java library, called
JMocap [15], was modified and used as the focal point of our
graphical user interface (GUI). Unlike other libraries considered
for this system, the JMocap library was easily augmented
into our system without requiring any additional dependencies
or limiting the compatibility of this program with different
operating systems. The original format of this motion capture
viewer is in a GUI that has a large control panel which included
options for the users to select videos. Since our interface is for
retrieval of videos based on gestures recognized, much of this
functionality was scaled down. In addition, some small changes
were made to the functionality and color scheme to tailor the
viewer more to our system.

In our interface, a user is prompted to perform a gesture.
When a gesture is recognized, the system announces which
gesture was recognized and a clip is pulled from the motion
capture database and played on-screen with the motion capture
viewer, as seen in Figure 4. The database is indexed
with human-readable descriptions for each clip like ”forward
dribble” and ”run left.” This index is used to search the database
for keywords like the name of the gesture given. Direction
measured by horizontal and depth positions of the blobs are
used to filter the search for motions in that particular direction.
The system finds and selects such a file by parsing the index,
then uses the JMocap library to load the motion capture file and
play the clip on-screen.
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Gesture Kicking Running Jumping Dribbling Marching
Kicking 54 14 8 22 0
Running 0 19 0 0 0
Jumping 1 2 24 4 0
Dribbling 3 2 20 23 0
Marching 42 63 48 51 100

Table 1: Confusion matrix totals for five twenty gesture tests
using ten samples and four states. The gestures listed across the
top represent the gesture given, the gestures along the left side
of the table represent the gesture predicted by the models.

Gesture Kicking Running Jumping Dribbling Marching
Kicking 57 14 5 20 0
Running 0 27 0 0 0
Jumping 1 2 45 3 0
Dribbling 4 2 13 29 0
Marching 38 55 37 48 100

Table 2: Confusion matrix totals for five twenty gesture tests
using twenty samples and four states. The gestures listed across
the top represent the gesture given, the gestures along the left
side of the table represent the gesture predicted by the models.

3 Results
In implementing the HMM for gesture recognition, different
variables were considered. Different numbers of samples used
to train the model were tested to assess the quality of the results.
Each gesture was trained on several separate sets, then training
data for one set would be used as testing for the other sets.
We tested five, ten, and twenty sample sets modeled with two
through five states and nine states. Each was tested with an
input of twenty gestures.

The marching gesture, was most predictable over all tests
with the changing numbers of states, with an increase in
performance with an increase in number of states. With two
and three states marching had recognition rates between eighty
and ninety percent over different tests. With four or more states,
marching has a consistent hundred percent recognition rate.
The kicking gesture also improves with state size from being
near thirty percent with two states and above fifty percent with
four states. When increased to nine states, kicking improved to
eighty percent correct recognition. Some gestures, like running
and jumping had decreased performance with increasing states.
With three states, jumping was recognized correctly about
ninety percent of the time and running about seventy percent
of the time with two states. The performance was worse for
both gestures when tested with more states. Due to this effect,
a closer to median number of states seems to have the most
positive results when considering all gestures.

Overall, tests using ten samples performed much better than
tests using five samples for all states. For each gesture, there
appeared to be a decrease in false positives, in which the
incorrect gesture is recognized. There is also an apparent
increase in successful recognition of each gesture. Some
gestures, like kicking and dribbling did not improve as much
as other gestures. There were some individual tests in which

kicking or dribbling would have slightly worse performance
with the sample size increase. It is presumed that this is a
result of the similarity of these motions with marching could
cause marching to be falsely identified more often in some
cases. Overall however, there was a small improvement in
the recognition performance with the sample size increase for
the kicking and dribbling gestures. Running and jumping both
had significant improvements when increasing the sample size.
Increasing sample size did improve the recognition rate of
marching for two and three states. For four or more states,
marching stayed at a hundred percent recognition, regardless
of sample size.

Marching was the gesture having the highest number of false
positive results. The confusion matrices shown in Tables 1
and 2 provide an instance of the high rate of marching false
identification depicting results from a series of tests using four
states and sample sizes of ten in Table 1 and twenty in Table 2.
Running is most commonly confused with kicking in addition
to marching. However, both marching and kicking are seldom
identified as running in lower numbers of states and were
not identified as running with four or more states. Jumping
and dribbling are sometimes mistaken for one another. With
sample size increases, the false positives between dribbling and
jumping have a tendency to decrease.

4 Conclusion and Future Work
This paper has introduced a system which allows a user to
control an avatar on-screen by performing gestures in front of an
inexpensive motion detection device like the Microsoft Kinect.
The primary goal of this project was to find an inexpensive and
user friendly way to allow people to use gestures to control a
character. Many people are captivated by new and interesting
ways to interact with the different types of computer systems
that they use. For that reason, a system like this may have
many applications in computer user interface design, animation,
gaming, and other industries. There are aspects that should be
modified in this system to make it even more accommodating
and robust.

To make the system more fun and friendly for users, a motion
graph similar to the ones described in [2] and [16] can be
employed. Adding this functionality to the system can be used
to keep the character moving on-screen, even before a gesture
is given. It could also add more seamless transitions between
clips played and possibly allow several clips of the same type to
be played between gestures.

Based on the results discussed in Section 3, increasing the
amount of samples that each model is trained on will likely
improve the accuracy of the system. More testing can be done
with the number of states used in the HMMs as well to find good
performance. While five types of motions were selected for use
in this system, there are many other types of motions available
in the motion capture database. With the HMM implemented
and analyzed, it would be possible to add more models to the
system for gestures pertaining to other motions in the database
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with little work required. Though, it is expected that recognition
rates will be impacted by the addition of new gestures. Adding
more observations could be added to the system involving
direction in other axes to give the model additional information
for more complicated motions. Doing so could also improve the
accuracy of the system with the current gestures.
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