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In an world of emerging technical advances and continual dangerous and undesirable situations for hu-
mans, it seems only logical that the next technological evolution will come in the way of autonomous robotic
operation. For an agent or robot to be autonomous it must think and learn on its own while dealing
with changing and unfamiliar environments. This thinking and learning can be accomplished through re-
inforcement learning, of which there are two major classes; discrete reinforcement learning and continuous
reinforcement learning. While both have their strengths and weaknesses, both provide a method for find-
ing an action selection policy that will allow an agent to make decisions that will optimize its progression
through a task. However since the problems are not completely known before hand, the action selection
policy can contain errors. In this research we attempt to get a better understanding of the error associated
with autonomous flight while minimizing the swing of a suspended load by examining a known function and
assessing its error. The research also focuses on comparing the accuracy of discrete reinforcement learning to
a novel continuous real-time decision making algorithm, Action Selection through Axial Projection (ASAP).
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1 Introduction

There are many situations and tasks that are not suitable for humans. These situations/tasks might be
too dangerous, too complicated, or simply undesirable and human involvement could have tragic outcomes.
Search and rescue missions, explosive deactivation, and operations in space are a few examples. It would be
ideal if robots could preform these tasks and enter these situations in our stead. Even more ideal would be
if the robots could be autonomous, meaning that they would preform without being controlled by a human.
This would require a robot to be able to think and learn on its own. They would have to make decisions
and act in unfamiliar and often changing environments.

One of the main concerns with autonomous agents is how movement can be addressed. Autonomous
motion-based robot task completion can be thought of in regards to the robot’s control, obstacle avoidance,
and decision making aimed at completing the task at hand. Current research aims to address this task com-
pletion through a methodology that overcomes the challenges of unknown dynamics and high-dimensional
state spaces to enable the agent to perform decision making to accomplish a task safely [6], [17]. To accom-
plish the robots control problem, an agent needs to understand the systems dynamics and any constraints
that are imposed on the system. This is important for the safety of the system and its surroundings. Since
the control problem is often intractable, the preferred method is to learn it from examples and with aid of
simulators. A reinforcement learning agent learns policy with respect to some observable reward and is a
good candidate for learning the control of the system.

Observation

Figure 1: Agent reinforcement learning

When controlling the system with reinforcement learning, actions that the robot takes lead to a next
state. It is through a series of actions and states that the robot eventually completes a task. The purpose
of reinforcement learning is to find an action selection policy that maximizes accumulated reward over the
lifetime of the task [11]. Tt does this by exploring the environment and constructing a value function, which
is an estimated potential accumulated reward. There are two types of value functions. The first is a state
value function, V', which associates states with an estimated potential accumulated reward. The second is an
action value function, ), that associates preforming an action with an estimated potential reward. Actions
occur between states. V can be thought of as a measure of a state’s quality, while () can be considered as
an action’s quality [23].

When making an action selection policy we need to select an action that transitions the system to the
highest possible valued state. This is called a greedy policy, 7(s) = argmaxV (s"), where s’ = D(s,a). D is
the dynamics of the system, which is unknown. This formula also applies to @ where 7(s) = argmazQ(s, a).
It is very hard to approximate () using linear combinations of feature vectors. It is easier to find feature
vectors for V. However, D is needed to evaluate the function, and as stated earlier, D is unknown.

Since D is not available there remain two options for creating an action selection policy, discretization
and approximation. Discretization is a brute force tactic that breaks up states, and actions into small steps
and calculates the action selection policy for each step. This can consume a lot of time and memory if
the discretization is very fine. However, if the discretization is coarse, the resulting action policy has the
potential to be rough which is not ideal for robots that need smooth movements to preform a task accurately
[6]. This leaves us with approximation, or more specifically, action selection through axial projection (ASAP).



ASAP is a continuous reinforcement learning approach that continually samples the states in a system and
determines a policy based on the average highest value.

1.1 Research Objective

The main objective for this research is to develop an understanding of the error associated with the au-
tonomous flight of a quadrotor carrying a suspended load. Suspended loads are challenging because they
swing and undulate based on the length of the tether and the motion of the quadrotor. The goal is for the
quadrotor to fly to a specific location and learn how to minimize the swing of its suspended load. This is
accomplished through a decision making policy for motion planning called action selection through axial
projection (ASAP). When dealing with action selection policies the action selection step needs to find the
highest valued action, a* = argmaz.caV(D(s,a)), which does not scale well for high-dimensional action
spaces. This is because action finding is an optimization problem on Q(s,a) = V(D(s,a)). Our goal is to
find a* , the true maximum. Functions V and D are not known, but their samples are. For a fixed state s,
we could polynomially interpolate Q). At least %da samples are needed for n — degree interpolation of a d,
-variate function.

To reduce the dimensionality of the optimization problem, we propose a divide and conquer approach.
Instead of solving one multivariate optimization, we solve d, univariate optimizations along the axes. We
find a highest valued point on each axis, a; . The composition of the axes action selections is the selection
vector a = [a;..aq,]’. On each axis, our method finds the largest value isoline that the axis is tangent on.
a* = [a}a;]" is the true optimal action, while a = [aza,]” is the action selected and the error is || a —a* || .
When the action components along the dimensions are independent, the error is zero, and the method finds
true maximum.

The goal is to assess ASAP’s method’s quality and understand under what circumstances ASAP’s method
for action selection leads the system to a higher valued state, and to quantify the action selection error. To
do that we will compare it to the optimal action selection and discrete action selection policies. We will
measure the distance between selected actions, and the difference between resulting @ function values.

2 Related Work

When considering the task of learning for the quadrotor dealing with a suspended load, it is necessary to
examine approximate value iteration[4], [7]. Approximate value iteration is used when examining continuous
spaces which is the primary focus of this research.

Suspended load control has been studied extensively [8], [15], [16], and [20] for cargo equipped quadrotors.
Palunko et al. successfully applied dynamic programming to solve swing-free trajectories for quadrotors[14],
[16]. Dynamic programming requires that the dynamics of the system are known ahead of time, and is
sensitive to the accuracy of the model, and to the start and goal states used. A reinforcement learning
approach doesnt require a white box approach to the systems dynamics, and learning doesnt need to be
repeated when the start state changes. Further, reinforcement learning is more suitable for compensating
for the accumulated error resulting from model approximation. Lastly, while dynamic programming requires
pre-calculating each trajectory, the approach presented here allows us to learn the problem once, and to
generate any number of different trajectories with different starting positions using the same value function
approximation. Palunko et al. [14] showed an example of manual obstacle avoidance of a quadrotor with
suspended load by generating swing-free trajectories using DP. Bernard et al. [2] developed a controller
for helicopters with suspended loads using two feedback loops. Hehn and DAndrea developed a controller
for a quadrotor balancing an inverted pendulum [9]. Further examples of quadrotors interacting with the
environment can be seen in aerial grasping [13, 18], ball throwing [19], and aerial robotic construction [24].

Swing-free trajectories have been studied outside of the UAV domain. They are important in industrial
robotics with applications such as cranes in construction sites and for cargo loading in ports [1, 25]. Residual
oscillation reduction is applicable to manufacturing environments where parts need to be transported in a
limited space. Zameroski et al. [26] and Starr et al. [21] applied dynamic programming to reduce residual
vibrations of a freely suspended payload.

Action selection plays a central role in reinforcement learning planning [22]. The latest trend is studying
domains with continuous actions. Online optimistic sampling-based planners have been particularly popular



[3, 5, 12, 22]. Johnson and Hauser [10] developed a motion planning approach based on reachability analysis
for trajectory tracking in acceleration-bound problems. Zhang et al. [27] proposed a sampling-based planner
that finds intermediate goals for trajectory planning for systems with dynamical constraints.

3 Preliminaries

In this section we provide a description of ASAP continuous learning and discrete learning. We will also
discuss the state spaces of the quadrotor.

When evaluating the error it was important to examine learning in discrete spaces against learning in
continuous spaces. Discrete learning partitions the action space into a grid of a set size. At each step in
the grid the agent uses reinforcement learning to determine the next step. The ASAP method for learning
consists of selecting an action by finding the optimal action on each axis separately and then combining them
together. Continuous learning is sometimes preferred to discrete learning because discrete learning can yield
rough outputs if the discretization is coarse resulting in ”bumpy” movements when smooth movements are
what is desired. Also discrete learning can take up a lot of memory because of the shear number of steps [6].

State space refers to to information relevant for this problem, and is velocity and, position of vehicle’s
and load’s centers of gravity. The action space is acceleration applied to the quadrotor’s center of gravity.
Acceleration has upper and lower limits of + 3 m/s2.

4 Methods

The following is a description of the steps and processes used to assess the error of the system. We start out
small, looking simply at the distance between the optimal and ASAP actions, and later broaden our inquiry,
examining the error when related to continuous action spaces versus discrete action spaces, to gain a more
conclusive knowledge of the potential error.

4.1 Quadratic Equation

We begin by examining a @) function as quadratic function with changing parameters, and determine for
what parameter values the ASAP method is successful. For the purpose of this study, we restrict our state
and action space to two-dimensions. Thus we represent () as

Q=alx—1)°+bly —2)* + cay (1)

where —3 < z < 3, —3 < y < 3 fit the acceleration bounds. The area, given by = and y are actions that the
quadrotor can take, known as the action space. The parameters that dictate the shape of the ) function are
a, b, and c. Taking horizontal cross sections of the area and projecting them downward displays the isolines
of the function. a, b, and ¢ describe these isolines, where a is the semi-major, b is the semi-minor, and ¢ the
rotation of the isolines about the optimal action. The area and the isolines can be seen in figure Figure 2(a).

When looking at the parameters and the isoline topology they produced it became apparent that the
isolines were modeling the three types of conic sections. Conic sections refer to the way in which a right
circular conical surface is intersected by a plane. The three types are ellipses, parabolas, and hyperbolas.
There is a fourth type of conic section, the circle, but it is a type of ellipse so it will not be discussed in this
paper. Noting this relationship was valuable because it showed that we were on the right track of reducing our
Q function to three parameters. The regular form of a quadratic function Az?+ Bxy+Cy?+Dx+Ey+F =0
consists of six parameters A, B, C, D, E, and F. However, the shape of a conic section is dictated by only
A, B, and C, or in our case a, b, and c. If b> —4ac < 0 then the equation represents an ellipse. If b? —4ac = 0
the equation is a parabola, and if b2 — 4ac > 0 it is a hyperbola.

Knowing that our @ function is completely operable with 3 parameters also allows us to quantify the
rotational value ¢, which is done in Section 4.5.

When looking at our @ function we concern ourselves with a few specific values. The optimal action,
(*,y") = argmax{(zy)|-3<z,y<3yQ(z,y) is a nonlinear optimization problem. The action value of the
optimal action can be defined as Z* = Q(z*,y*). We are also concerned with the ASAP action (z.,y.) and



its action value. As well as the discretized action (z4,y4), and the associated action value. Action values
are discussed in Section 4.4.

Quadratic Function Model Quadratic Function Model
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(a) Isoline Example (b) Distance between the optimal action and the ASAP action

Figure 2: (a) The isolines of the function are visible on the ”floor” of the graph. (b) Shows the projections to the
optimal and ASAP actions

4.2 Calculating Error Distance

The process of understanding the error began by comparing the distance between the optimal action and
the ASAP action. This was accomplished using Euclidean distance. The distance between the two points is
the value of the error, AM,, as seen in Figure 2(b).

AM. =|| (ze,ye) — (=", y7) | (2)

This error changed in relation to changing the parameters of the function. A 3D matrix was created that
contained all the distances for the different permutations of a, b, and ¢ from -50 to 50. At this early stage
in the research ¢ was simply a value and had yet to be quantified with an actual degree of rotation. The
calculation of rotation is discussed in Section 4.5.

4.3 Holding Parameters Fixed

The 3D matrix of distances proved to be too much data to analyze by graph (because we cannot graph 4
dimensions), let alone visualized. For this reason a was held fixed while ¢ and b were changed. This was
possible because b is a value proportional to a since they are modeling the dimensions of the isolines. Another
way to write b would be r(a) where r is some stretch value on a. By this logic we can redefine our @ function
to be

Q = ale — 1) + r(a)(y — 2)? + cay (3)

The main reason a was chosen as the fixed value was because we hypothesized that rotation, ¢, would have
the biggest impact on error for the system.

Using this method of holding a fixed, four cases where examined. The first case is when a is positive
and r(a) is positive, (+, 4+). The second and third cases are when a is positive and r(a) is negative, (+, -),
and visa versa, when a is negative and r(a) is positive, (-, +). The fourth case is when both parameters are
negative, (-, -). Figure 3(b) shows an example of this.

4.4 Action Value Function Difference

Another error to consider is if the quadrotor is actually making progress. This error is known as the action
value difference, or AQ. It can be assessed by the @ function as well. AQ is found by

AQC = Q(Qﬁc, yc) - Q(070) (4)



for ASAP continuous action values and

AQq = Q(xa,ya) — Q(0,0) (5)

for discrete action values. Through reinforcement learning the quadrotor is supposed to pick ”more” optimal
paths with each iteration. If the ASAP action or the discretized action has a greater () value than the base
action (Q(0,0)) then the quadrotor is making progress. If the @ value for the optimal is less than the base
action then the quadrotor is not learning and making ”"bad” decisions. See Figure 3(c).
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Figure 3: Using Equation 6 where a = —5 (a) The area of the function for which we are calculating the
error; (b) Depicts the error for different values of r(a) and (a — r(a))tan26; (c) The action value function
differences

4.5 Quantifying Rotation

Up until this point the value we had been using for ¢ was simply that, a value. It did not correspond
to an actual degree or radian of rotation. However, associating this value to an actual degree of rotation
proved pretty simple to do. The quadratic @) function we have been using can be reduced to the form
Ax? + By + Cy? = 0 as stated in Section 4.1. Because of this we are able to use the formula tan20 = AfBC
to find the actual ¢, where B is ¢, A is a, and C is r(a). All that was needed was the 6 value. A range for
6 was selected from —7 to 7. For each value of 7(a) we iterated through the range of  to calculate the
rotation. Using radians of rotation the @ value was calculated and the error plotted as before and graph
with respect to the actual rotational value.

Using this new understanding of the rotational value we can once again redefine our ) function.

Q= a(x —1)* +r(a)(y — 2)* + (a — r(a))tan20zy (6)

4.6 Discrete vs. Continuous Action Spaces

Up until this point, the calculations had been made for continuous ASAP action spaces. It was important to
look at the difference between the error in discrete spaces compared to that in continuous space. To do this



the step size was decreased significantly. The discrete maximum value was found by finding the maximum
point in the discretized mesh. What is difficult is that sometimes the optimal action lays outside of the range
of our discretized action space given different values of the parameters. If this occurred then that outside
value was ”snapped” back into the action space. The continuous maximum lay outside of the action space
if a was greater than or equal to zero.

The ASAP action was compared to the optimal action along with comparing the discrete action to the
optimal action.

The AQ, the action value, was also calculated for the discrete space, AQy, and the continuous ASAP
space, AQ., in order to compare the learning value for each type of reinforcement learning. See Section 4.4
and Figure 4.

5 Results

This section will discuss the results of this research and display the graphs associated with the results.
The most telling data was collected when comparing discretized reinforcement learning to continuous ASAP
reinforcement learning, as expected. Here, the most valuable data came when calculating the learning action
value function, @), and when comparing the continuous action to the optimal action, along with the discrete
action to the optimal action.

All calculations and graphs were completed using Matlab. To calculate optimal action

(LL'*, y*> = argmam{(a:,y)\73<m,y<3}Q(l‘a y) (7)

we used a built-in Matlab call ’fmincon’ from the Optimization toolbox. The majority of the data and
results found in this paper are shown using graphs. The graphs allow us to quickly see a relationship
between hundreds of data points without having to look at charts of numbers.

5.1 Discrete Learning

As previously discussed, discrete learning is accomplished by discretizing the actions into small steps then
evaluating the @). Discretization is known to be effective in reinforcement learning and was confirmed by this
research. It was shown that the AQ for a fine grain discretized space is always positive, meaning that the
agent is always making progress when using a discrete reinforcement algorithm. This can be seen in Figure
4.

Discrete Action Value Continuous ASAP Action Value
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(a) Discrete Learning (b) Continuous ASAP Learning

Figure 4: Using Equation 6 where a = —8 (a) positive action values for discrete learning. (b) ASAP action values

5.2 Continuous Learning

The primary focus of this research was to test and potentially justify ASAP. Here we are able to make some
claims about it.



From the data it was apparent that there were four cases of parameters that effected the error in regards
to continuous learning as mentioned in Section 4.3. The first case is when a and r(a) are both positive, (+,
+). The results for this case are shown in Figure 5 (a-c). They show that when a = r(a) ASAP is selecting
optimal actions. It was also noted that when rotation is zero ASAP is selecting optimal actions. This second
observation was confirmed by the results of the second case (+, -) shown by Figure 5 (d-f). From these two
cases it was observed that peaks and valleys for both discrete and ASAP action values occurred between 28°
and 58° of rotation and —28° and —58° of rotation. This observation held true for all 4 cases of parameters.
These results suggest that as the ratio between @ increases and when the actions are coupled the most
variation occurs in the vicinity of 28° and 58° of rotation and —28° and —58° of rotation, and that the action
error increases proportionally to the @ ratio.

The fourth case is when both parameters are negative, (-, -). The majority of the data comes from this
fourth case. This is because two negative parameters result in the shape of the value function for a quadrotor
with a load.

Discrete Action Value Continuous ASAP Action Value ASAP Error

(8) AQu for (++) (b) AQ. for (+,+) (c) AM, for (+,+)

Discrete Action Value Continuous ASAP Action Value ASAP Error

8Q,

(d) AQq for (+,-)

Figure 5: Using Equation 6 where a = 5 (a)(d) discretized action values. (b)(e) ASAP action values. (c)(e) ASAP
error, A M., values.

When examining continuous learning for the case of (-, -) it was possible to see that for some values of
r(a) and (a — r(a))tan26 the action value, AQ., was negative. This means that for some actions the ASAP
function was resulting in the agent is taking a step backwards. See Figure 6 (a). We looked at these areas
of negative learning and noted that they fell within an area that occurs when

—r(a) — \/7"(a)2 —4(a)((a — r(a))tan20)
2(a)

<0 (8)

which is the equation for finding solutions to a quadratic formula f(z) = az?® + r(a)x + (a — r(a))tand. By

this we saw that when
—r(a) — /r(a)? — 4(a)((a — r(a))tan20)
2(a)
the continuous algorithm was positively learning. When the parameters resulted in this positive learning

case, we calculated the continuous error using those same parameters and compared it onto the continuous
negative learning action value graph (Figure 6 (b)). It was seen that the area of continuous error for positive

>0 (9)



learning action value never intersected with the negative learning action value as long as the value of a was
negative. From there we projected this area on to continuous error graph (Figure 6 (c)) and saw that it lay
over the section of the graph where error was not at the maximum. This proves to us that the highest error
when comparing the ASAP action to the optimal action occurred when the function has a negative ASAP
continuous action value when parameters a and r(a) were both negative.

Continuous ASAP Action Value Negative Continous ASAP Action Value

_ al e al
rotation -2 20 n fotation -2 20 "

(a) Continuous Action Value (-,-) (b) Negative Cont. Action Value (-,-)

ASAP Error

rotation -2 -

(¢) Continuous Error (-,-) (d) Rotations of High Error (-,-)

Figure 6: Using Equation 6 where a = -5 (a) The action values for continuous ASAP learning. Here AQ. is never
equal to zero; (b) The areas where the action value is negative (less than zero) and the areas, marked by straight
colored lines, for which Equation (9) holds true. (c¢) The areas, also marked by colored lines projected onto the action
space, of negative action value correspond to the areas of high error. (d) Areas in black show for what values of
(a — r(a))tan26 that AM. is highest.

Another observation worth mentioning is that the areas of highest error when comparing the ASAP
action to the optimal action for the case of (-, -) occurred roughly between 5° and 45° of rotation and —86°
and —45° of rotation. See Figure 6 (d). It should also be noted that error was zero when rotation was zero
for the (-, -) case. This means that some coupling between actions is allowed.

In regards to the (-, +) case, where a is a negative value and r(a) is a positive one the findings were not
as conclusive. Equations 8 and 9 proved not to model the same relationship as seen in the (-, -) instance
for this case. Other equations were tested such as r(a) > /4 * a * (a — r(a))tan20, which tells us how many
roots of the quadratic equation there are. On the first pass this equation seemed to work because it lay over
the regions where continuous learning action was negative. However, upon further inspection it was seen
that the area this equation was modeling was limited and did not encompass all of the areas on negative
learning action when the value of a was changed. Further more, the areas of negative learning action did
not correspond to the areas of high or low error for continuous error.

Even though we were only able to present conclusive data and observations when it came to the (-, -)
case and a few minor observations about the (-, +) case, these results provide insight into the potential of
the ASAP continuous learning function. This will contribute to future work with ASAP and continuous
reinforcement learning for autonomous agents as a whole.




Continuous ASAP Action Value Negative Continous ASAP Action Value ASAP Error
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Figure 7: Using Equation 6 where a = -5 (a) The action values for continuous ASAP learning. (b) The areas where
the action value is negative (c) Depicts error for ASAP learning.

6 Conclusion

Addressing the problem of autonomous quadrotor swing-free flight in order to assist in dangerous and
undesirable tasks is a rapidly developing area of research. A novel continuous learning approach to this
problem, action selections through axial projection (ASAP) was asserted. We propose a manner in which
to estimate the error of this algorithm. Error was assessed by comparing the distance between the optimal
action and the continuous action. We apply this error estimation to both ASAP and discrete learning action
spaces to determine if ASAP is the best option. It was shown that correlations between negative learning
and high error could be made for ASAP learning for the case when the parameters of the @) function were
negative. The results of this research contribute to the study of ASAP continuous learning and reinforcement
learning for autonomous agents.
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