
An Automated Synthesis Tool for Generating Noise-Immune
Sub-Threshold Circuits

Amrita Mazumdar
am3210@columbia.edu

August 28, 2013

Abstract

Nanoscale circuits operating at sub-threshold
voltages are increasingly susceptible to the im-
pact of random telegraph signal (RTS) and
thermal noise, resulting in soft errors that
compromise a circuit’s reliability. This work
presents a low-power, area-efficient error correc-
tion technique and an automated tool to syn-
thesize noise-immune circuits. The tool selec-
tively applies reinforcement using invariant re-
lationships to correct noise-induced signal er-
rors. Simulations demonstrate our synthesized
circuits provide better noise immunity than
standard CMOS technology in tests with lim-
ited area and power overhead.

1 Introduction
As CMOS technology shrinks in accordance with
Moore’s Law, nanoscale circuits are required to func-
tionally operate at sub-threshold voltages [1]. At
such low power, circuits become much more suscep-
tible to the impact of random telegraph signal (RTS)
and thermal noise as node capacitances and voltage
supplies decrease, and produce single-event upsets
(SEUs) that compromise a circuit’s reliability [2, 3].

Because these SEUs are, by nature, ephemeral and
variable in frequency, their effect may be negligible
in standard circuit design. Ultra low-power (ULP)
applications, which primarily operate in the sub-
threshold voltage region, become increasingly suscep-
tible to critical errors as a result of soft errors [3].
Techniques to combat the effect of soft errors must
also be low power and area-efficient, so as to not ex-
ceed the constraints of nanoscale circuit design [2].

The purpose of this work is twofold: to present a
methodology for improving the noise tolerance of sub-
threshold circuits using invariant relationships and

Schmitt trigger logic, and to discuss the results of two
implementations of this methodology on circuits from
the MCNC benchmark netlists. This work builds off
of prior results from Nepal et al. [4], Alves et al. [5],
Donato et al. [2], and Moser [6].

2 Background
The strategy presented for suppressing noise and re-
ducing errors relies on usage of invariant relationships
and Schmitt trigger circuits. This section provides
some background on these topics, as well as a review
of the circuits used for simulation and testing.

2.1 Invariant Relationships
The invariant relationships, or implications, used in
this work are formal assertions of gate-level logic val-
ues in a circuit. For clarity, we express implications
in the following form:

siteA = x → siteB = y, {x, y}ϵ{0, 1}

where siteA is referred to as the implicant and siteB
is referred to as the implicand. In digital circuits,
these implications occur naturally, and logical con-
straints ensure several implications exist between
nodes in a circuit. Implications are an effective choice
for error correction in digital logic because they are
naturally occurring and no information on high-level
behavioral constraints is required to identify them.
[5]. For example, in Figure 1, we show the basic im-
plication N3 = 0 → N24 = 0, meaning if N3 = 0,
then N24 = 0 also at all times, regardless of other
node values.

While implications are a basic and efficient means
of error detection and correction in a circuit, they do
have some limitations [5]. A single implication can

1



Figure 1: Example circuit with implications and graph representation, from [8]

only suppress errors of a single polarity for a given im-
plicand, which motivates an informed selection of the
best implication chosen to reinforce a node. More-
over, circuits optimized to minimize area and/or de-
lay can constrain the number of usable two-site impli-
cations, further motivating a strategy for implication
selection that can reinforce both optimized and unop-
timized logic. If valuable invariant relationships can
be specifically identified and reinforced, they can be-
come a powerful tool for real-time error detection and
correction [4]. However, reinforcing all possible im-
plications at runtime becomes costly in terms of area
and power overhead, and determining some means
of selectively choosing optimal implication sets is re-
quired [6]. This reasoning motivates our exploration
of various methods for selective implication reinforce-
ment.

2.2 Schmitt Triggers
The Schmitt trigger circuit has been classically used
for applications requiring hysteresis, or lag, in the
voltage transfer characteristic [7]. Hysteresis can e
quite useful in suppressing wide-range noise, and the
Schmitt trigger has been effectively used to extract
signals from noisy circuits [6]. Also notable in the
Schmitt trigger’s voltage transfer function is the slow
input response coupled with fast output transition.
These characteristics make the Schmitt trigger ideal
for soft error correction in ULP logic, as its trans-
fer function effectively “ignores” slight voltage devia-
tions. A comprehensive evaluation of CMOS Schmitt
trigger gates can be found in Dokic. Additionally,
Sasaki et al. presented general soft error and noise
masking using classical Schmitt trigger logic with
good results, indicating a selective usage of Schmitt
trigger gates may provide similar success [7, 3].

A major advantage of using the Schmitt trigger cir-

cuits is their relatively low transistor count overhead;
as noted in Dokic, a CMOS . Nevertheless, replacing
every gate in the circuit with a Schmitt trigger imple-
mentation would still lead to an unacceptable tran-
sistor count. Instead, we propose selectively adding
Schmitt gates to reinforce signals that are most likely
to produce bit flips at primary outputs.

Figure 2: Basic Schmitt trigger NAND (left) and
modified Schmitt trigger NAND (right) for implica-
tion reinforcement, from [2]

We use a modified Schmitt trigger gate, first pre-
sented in Donato et al., with feed forward capabilities
to implement implication reinforcement in a circuit
[2]. Referring again to the implication set in Fig-
ure 1, we can use the implicant N4 in the implica-
tion N4 = 1 → N10 = 0 to reinforce, or correct,
the value at N10 through a feed-forward mechanism.
Because Schmitt triggers typically reinforce an out-
put using a feed-back mechanism, we must modify the
conventional gate to add a control input for the impli-
cant and maintain proper operation when the impli-

2



cation is not activated. A conventional Schmitt trig-
ger NAND and its modified counterpart are shown
in Figure /refschmittnand for reference. One notable
consequence of the modified Schmitt trigger is that
four modified Schmitt gates are possible for each gate,
one for each combination of pull and pass transistor
used to reinforce the implication [2]. Also notable
is that while the total number of transistors used in
a conventional m-input Schmitt gate is 2(2m + 1),
our modified Schmitt gate uses 3m + 1 transistors.
For standard 2- and 3-input gate, this modification
results in smaller gates for ULP circuits, which typi-
cally have area and power constraints.

2.3 MCNC Benchmark Netlists
The Microelectronics Center of North Carolina
(MCNC) benchmark suite is a collection of standard-
ized libraries and circuits. The suite is widely used
in academic research for testing, and has a number of
circuits ranging from simple to complex. For synthe-
sis and testing in this work, we use a range of circuits
from the MCNC benchmark suite implemented using
a 22nm FDSOI model card, specifically the circuits
RD53, RD73, MISEX1, T481, and 5XP1.

3 Methodology
In hopes of experimentally determining an effective
scheme for selecting an implication set with optimal
noise suppression and SEU correction, we present two
methodologies for selecting implication sets: 1) scat-
tered high-fault node reinforcement and 2) implica-
tion chain-building. Both methodologies require pre-
liminary use of implication detection techniques de-
veloped by Alves et al. and Nepal et al., and are
presented first for completeness [8, 5, 4].

3.1 Implication Detection
In this section, we present the workflow used to auto-
matically identify and validate available implications
in a circuit. Originally presented in Alves et al., the
workflow is implemented as a custom script which
generates implications from a circuit’s Verilog netlist
[5].

The workflow can be seen in Figure 3 and is imple-
mented in a custom script. The custom script invokes
Mentor Graphics FastScan (2009.1.10) to run Auto-
matic Test Pattern Generation and functional sim-
ulations. The results of these simulations are used

Figure 3: Design workflow for implication detection,
adapted from [5]

to populate a set of input-output vectors. To reduce
the heavy computational load of running ATPG and
functional simulations for larger circuits, we only use
ATPG to generate a subset of possible input patterns,
and then use the zChaff SAT solver to invalidate the
implications.

The result of this process is an exhaustive list of
valid implications present in a given circuit. This list
is typically much larger than would be useful in us-
ing implications to reinforce nodes in a circuit, and
includes many self-reinforcing, “backwards”, or oth-
erwise ineffective implications. A self-reinforcing im-
plication, one where the implicant is the input to a
gate and the implicand is the output of the same gate,
is not considered ideal because it does not provide
any new reinforcement to the node and can poten-
tially strengthen a glitchy output. A backwards im-
plication, where the implicant is closer to an output
than the implicand, is inherently ineffective at the
single-cycle reinforcement we are working to promote.
Other criteria for a clearly ineffective implication in-
clude a wide distance, which could induce more er-
rors, and implications that share an implicand, as our
Schmitt trigger-based reinforcement method only has
one control input for an implicant. Activation prob-
ability, or the probability that an implication will be
invoked, can be extrapolated from the functional sim-
ulations conducted during implication detection, and
is also a useful metric for gauging the efficacy of an
implication. These criteria constrain and complicate

3



the implication selection process for an automated
tool. But by determining which constraints are most
critical, how to weigh and prioritize the different op-
tions, and how to distribute implications across a cir-
cuit all, best practices can be developed for implica-
tion set selection.

To that end, we present two different algorithms
for implication selection: scattered reinforcement
of high-fault nodes, and implication chain building.
Custom scripts were developed for each methodology
and simulations on their results were run to examine
error correction and overall noise suppression.

3.2 Scattered Reinforcement of High
Fault-probability Nodes

The primary goal of scattered reinforcement of high
fault-probability (HF) nodes is to use simulation tools
to generate a list of potentially error-prone nodes in
a circuit, as well as use implications to specifically
target these nodes. While this fault simulation tech-
nique cannot irrefutably determine soft errors, which
by nature are transient and non-repeating, it can
serve as a good indicator of nodes with high fault ob-
servability. To ensure that all outputs are reinforced,
we run this selection process within the fan-in cone
(FIC) of each outputs, rather than blanket coverage
of the circuit. After a lower bound of nodes are rein-
forced for each output and the tool determines area
and power constraints have not been met, we then
select more implications that reinforce the remaining
“high fault probability” nodes in the circuit.

Fault observability appears a good selection crite-
ria because of increased breadth in coverage, targeted
selection of demonstrated “important” implications,
and more flexibility in implicant selection [6]. Rein-
forcements can be placed across the most likely points
of failure in a circuit, rather than constrained to a
certain path, which provides both more flexibility in
specific selection and in distribution of coverage. If
HF nodes are concentrated in a specific area, a likely
scenario when dealing with soft errors, they can be
targeted without having to parse out the ones that
fit into some more rigid arrangement scheme. Addi-
tionally, we can choose the strongest implicants to
reinforce a node without focusing on a given path or
nodes originating from one input, increasing the like-
lihood of propagating a correct signal rather than a
corrupted one.

The workflow, shown in Figure 4, essentially im-
plements the following algorithm. It describes the

Figure 4: Design workflow for HF-node reinforce-
ment

process for producing a list of implications that re-
inforce high-fault nodes within given power and area
constraints.

This process equally weights 1) the activation
probability of an implication, 2) the “high fault-
probability”, or percentage of faults at an output
caused by a given implicand, and 3) the “low-fault
probability”, or steadiness (low fault count) of an
implicant in a fault simulation. Additional trials
weighted different combinations of these criteria to
evaluate which characteristics were most influential
on an output’s error count.

3.3 Building Implication Chains
An implication chain is a set of implications which re-
inforce nodes along a continuous path from a circuit’s
input to an output. The motivation for building im-
plication chains stems from our assumption that in-
put vectors are pure signals with few glitches, and the
glitches arise organically during circuit operation. By
reinforcing nodes along the path from a stable input
to an output, the output node can be significantly
reinforced.

The algorithm and selection criteria developed
for implication chain-building were comprehensively
explored in Moser, and we present a summarized
overview of the process for completeness [6]. The in-
herited workflow and script have been adapted and
optimized based on results from the high-fault node
reinforcement trials, and the updated workflow and

4



Input: circuit.v, implication list
Generate graph representation of circuit;
Import all valid implications into graph;
foreach output in the circuit do

Make verilog from output’s FIC;
Run ATPG, fault simulation;
Make sorted HF node list from fault report;
foreach HF node at each output do

Get list of implications with node as
implicand;
Make verilog from HF node’s FIC;
Run ATPG, fault simulation;
Parse fault report in reverse;
Make sorted low-fault node list;
Create list of implications sorted by

• activation probability

• HF implicand probability

• low-fault implicant probability

end
end
repeat populate best implications list

Add top implication at each output to final
list

until power and area constraints are met;
Result: List of best implications

Algorithm 1: Scattered High-fault node selection
process

algorithm are shown.
The advantage of using an implication chain is

clear: a clean signal is pushed through to an out-
put via reinforcements, and glitchy nodes not along
the chain’s path are suppressed. The drawback, how-
ever, is that the number of implications used is lim-
ited by the shortest path from an input to an out-
put. We seek the shortest path with implications
as adding nodes to extend the chain may not be as
area- or power-efficient, but chains with a small num-
ber of implications from an input to output may not
cover the other paths of greater fault probability. The
script returns all chain sets for all outputs, and chains
were chosen by inspection based on total chain length,
activation probability, and overall score. Overlap-
ping chains, chains with different primary outputs
containing overlapping implications, were discarded
to ensure effective and well-distributed Schmitt trig-
ger placement while constrained with power and area
limitations. Additionally, primary outputs that rein-
forced other primary outputs were prioritized, to help

minimize the number of nodes needed.

Figure 5: Design workflow for implication chain-
building

The original workflow for chain-building traverses
the graph from all outputs to all inputs, finding all
implication chains from a primary output to a pri-
mary input. It compiles an exhaustive list, and scores
each chain based on an earlier preferred criteria of
implication activation on a high signal and small im-
plication coverage distance (1 < distance < 4).

An evaluation of the previous script demonstrate
average activation probability and distance are strong
indicators of a chain’s success rate, and some met-
rics used by the previous scoring metric (prioritizing
high-valued activation, for instance) should be elimi-
nated. Consequently, we modify the workflow so im-
plications are added as edges on the circuit’s graph
representation, and a traversal from primary output
to primary input could contain normal nodes or im-
plications in a search for the shortest input-to-output
path. The updated workflow is shown in Figure 5.

We express the “distance” of an implication’s graph
edge as a negative-valued distance, to indicate it is a
higher-priority and unconventional graph edge. The
distance’s weight is determined by its actual distance
and activation probability of the implication. Fig-
ure 6 shows a visualization of this implication edge
insertion.

Because the workflow now seeks only the shortest
path and the implication’s graph distances are a func-
tion of an implication’s calculated efficacy, the short-
est path is almost always implication-reinforced, en-

5



Figure 6: Updated graph of circuit with select im-
plication edges added

Input: circuit.v, implication list
begin preliminary work

Generate graph representation of circuit;
Import all valid implications;

end
Add valid implications as graph nodes with
weighted edges;
foreach output in the circuit do

Build shortest-path chain from output to a
primary input

end
Result: Input-output chains, implication set

Algorithm 2: Implication chain-building process

suring that the workflow works to reduce errors while
working under power and area constraints.

3.4 Simulation

Simulations were conducted in Silvaco SmartSpice
for 3.2µs, a simulation time chosen to accommodate
the restrictive computation limits for longer simula-
tions. To artificially accelerate the frequency of RTS
glitches, which typically appear on the ms time scale,
we conduct several simulations on different RTS noise
samples [2]. Across the set of RTS noise simulations,
we inject 150mV RTS noise and 80mV thermal noise
while the inputs loop over a predefined Grey code
input vector.

Figure 7: SPICE simulations of RD53, no implica-
tions added

Figure 8: RD53 circuit with scattered HF-node re-
inforcement

4 Results

This section presents graphical implication sets and
simulation results for the RD53 circuit, one of the
simplest circuits in the MCNC benchmark. Simula-
tions were also conducted on RD73, MISEX1, 5XP1,
and T481, and, while not presented due to their com-
plexity, results were fairly similar across all circuits.

We first present a simulation of the RD53 circuit
with no implications and injected noise, (shown in
Figure 7, as a demonstration of typical circuit out-
put. The outputs are referred to sequentially, as v50,
v51, and v52. Noise corruption can be visually noted
in the signals overall, and v51 especially demonstrates
significant degradation. In implication-reinforced
simulations, we gauge successful noise suppression
and error reduction based on an increased adherence
to the unadulterated reference output (shown in black
at each output).

6



Figure 9: SPICE simulation of RD53 with HF-node
reinforcement

Figure 10: RD53 circuit with implication chains

4.1 Scattered High-fault Node Rein-
forcement

A visual representation of scattered implication
placement in the RD53 circuit is shown in Figure 8.
The scattered implication set was generated under
20% node-coverage constraints and a weighted em-
phasis on implicant steadiness and high-fault outputs.
Other trials were performed with other weight com-
binations for scattered reinforcement, with the best
results observed under the presented combination of
weights. We see from the simulation results in Fig-
ure 9 that although general noise has been mitigated
in v50 and v51, it appears to have increased in v52.
This indicates the choice to scatter implications may
not provide the best results. Additionally, exami-
nation of all the high-fault trials shows the best re-
sults were achieved under “chain-like” circumstances,
where implications reinforce each other, further mo-
tivating the use of chains rather than scattering im-
plications at points of high-failure rates.

Figure 11: SPICE simulation of RD53 with impli-
cation chains

4.2 Improved Implication Chains
A visual representation of implication chain place-
ment in the RD53 circuit is shown in Figure 8. This
set of implication chains provides significant noise
suppression and error reduction across all outputs,
especially outputs v50 and v51. The output v52 does
demonstrate some glitching still, but the errors are
significantly reduced from the original circuit and
noise suppression is quite high within the first few
nanoseconds. As noted earlier, these successful re-
sults are in keeping with analysis and our predictions
of earlier trials.

5 Conclusions
In this work we discuss a cost-effective and success-
ful solution for improving reliability in sub-threshold
ULP circuits. Schmitt trigger circuits were chosen
to implement an implication-based methodology for
signal reinforcement and correction, and prior work
demonstrated the effectiveness of this strategy. An
automated tool synthesized reinforced circuits using
two different algorithms, scattered high-fault node re-
inforcement and implication chain-building. Results
demonstrate that implication chain-building had su-
perior results to scattered HF-node reinforcement,
and overall results show highly-effective noise sup-
pression and error reduction characteristics.

6 Future Work
Future work will focus on extending the implication
selection metric to be more dynamic for circuits of

7



varied complexities and overlap, as well as develop-
ing an automated metric for quantifying glitch de-
tection in SPICE results. Though we have tested on
five of the MCNC benchmarks, future work should
also include expanding simulations to a wider range
of circuits and evaluating other noise-immune design
solutions for completeness.

7 Acknowledgements
This report was compiled with guidance from Marco
Donato, and would not be possible without the sup-
port of R. Iris Bahar, Brown University LEMS, and
the DREU program. This work was generously
funded by the DREU program, which is jointly ad-
ministrated by the CRA-W and the CDC and has
been supported by a grant from the NSF Broaden-
ing Participation in Computing program (NSF CNS-
0540631).

References
[1] V. De and S. Borkar, “Technology and design

challenges for low power and high performance
[microprocessors],” in Low Power Electronics and
Design, 1999. Proceedings. 1999 International
Symposium on, pp. 163–168, 1999.

[2] M. Donato, F. Cremona, W. Jin, R. I. Bahar,
W. Patterson, A. Zaslavsky, and J. Mundy, “A
noise-immune sub-threshold circuit design based
on selective use of schmitt-trigger logic,” in Pro-
ceedings of the great lakes symposium on VLSI,
GLSVLSI ’12, (New York, NY, USA), pp. 39–44,
ACM, 2012.

[3] Y. Sasaki, K. Namba, and H. Ito, “Soft error
masking circuit and latch using schmitt trigger
circuit,” in Defect and Fault Tolerance in VLSI
Systems, 2006. DFT ’06. 21st IEEE International
Symposium on, pp. 327–335, 2006.

[4] K. Nepal, N. Alves, J. Dworak, and R. Bahar,
“Using implications for online error detection,” in
Test Conference, 2008. ITC 2008. IEEE Interna-
tional, pp. 1–10, 2008.

[5] N. Alves, Y. Shi, J. Dworak, R. Bahar, and
K. Nepal, “Enhancing online error detection
through area-efficient multi-site implications,” in
VLSI Test Symposium (VTS), 2011 IEEE 29th,
pp. 241–246, 2011.

[6] L. Moser, “Modeling optimal schmitt trigger
based implication chains for noise immune sub-
threshold circuits.” Undergraduate honors thesis,
Brown University, 2013.

[7] B. L. Dokic, “{CMOS} {NAND} and {NOR}
schmitt circuits,” Microelectronics Journal,
vol. 27, no. 8, pp. 757 – 765, 1996.

[8] N. Alves, A. Buben, K. Nepal, J. Dworak, and
R. Bahar, “A cost effective approach for on-
line error detection using invariant relationships,”
Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 29,
no. 5, pp. 788–801, 2010.

8


