
Collision Avoidance with Unity3d

Jassiem Ifill

September 12, 2013

Abstract

The primary goal of the research presented in this paper is to achieve
natural crowd simulation and collision avoidance within the Unity3d game
engine as it is becoming a very popular choice of development software.

Throughout this summer, a section of our research group was focused
on using the Unity3d game engine and we attempted to use two different
methods of achieving Collision Avoidance to see if they were compatible
and feasible within the Unity3d engine. As such, this paper builds upon a
previous Predictive Force Collision Avoidance method and use a variation
of it in order to achieve a working form of Collision Avoidance within the
Unity3d engine.

The final result of this project was a fully operational windows appli-
cation that allows the user to choose between two different algorithms for
collision avoidance. After that, the user is then able to use this version
of the Predictive Force Collision Avoidance Model to either: play a sim-
ulation containing agents with working collision avoidance with as many
agents as desired, render a simulation from a file, or export a simulation
with a specified amount of agents and length to a file.

1 Introduction

Within this research, we are focusing on implementing various methods of Col-
lision Avoidance within the Unity3d game engine. We have decided to do this
because Unity3d has become a very popular game engine and many develop-
ers are now switching over to the Unity3d game engine as it presents a user
friendly development environment with various resources. Moreover, Unity3d
has three different languages that can be used for scripting and they are C-
Sharp, JavaScript, Boo (Python). Likewise, Unity3d also has its own animation
system whilst still allowing users to import models from other rendering soft-
ware such as Maya or Blender. As such, my co worker David and I started
working with the Unity3d game engine so that we could start to figure out how
some parts of the engine work. We initially started with simple tutorials and
afterwards, we created small goals to work towards whilst building up to our
final project at the same time. Throughout the summer, I also used a variety
of methods and algorithms in order to move towards the final project, and to
solve the various problems that we encountered.

1



Figure 1: Primary Graphical User Interface (GUI) for the application

Figure 2: Overhead View of Simulation

2



Figure 3: Chase View of Simulation

3



Additionally, we worked on implementing the field of Crowd Simulation and
Collision Avoidance within the Unity3d game engine as Crowd Simulation is
very important in todays society. One of the reasons for this is that the focus
on safe and efficient crowd management is becoming more essential due to the
population of the world increasing, as well as urbanization. As such, Crowd
Simulations allows one to analyze and even optimize crowd behavior in a given
situation. Possible uses of Crowd Simulation include, but are not limited to,
evaluating structures throughout their building process, creating and testing
the efficiency of evacuation plans, detecting safety risks and security risks, com-
paring multiple scenarios at once, and determining the most efficient size of a
structure in order to achieve a specific goal. Collision Avoidance is a part of
Crowd Simulation and virtualization that deals with having agents avoid colli-
sion with each other, or certain obstacles. Collision Avoidance is used within
many different types of Crowd Simulation and even other types of simulation
and virtualization. Within Crowd Simulation, Collision Avoidance is important
as it is needed to properly simulate crowds in a lifelike and natural manner.
Without Collision Avoidance, one would not be able to use Crowd Simulation
to test the safety and efficiency of certain structures as the agents would not
behave like normal humans. Moreover, Collision Avoidance is also used in a
variety of games, and other virtual simulations.

2 Related and Prior Work

The subject area of Collision Avoidance within Crowd Simulation has been
touched by a plethora of previous works in the past. One of these works is
explained in the ”Reciprocal n-body Collision Avoidance” paper by Berg et
al. [6]. This paper addressed the issue of collision avoidance within Crowd
Simulation by posing a geometric way of achieving Collision Avoidance agents in
a small clustered area. To achieve this, Berg et al used a velocity based method
in which the agents would create a half-plane of, or a space of, velocities that
will allow the agent to avoid collision. Then, the agent would select the optimal
velocity using a form of ”linear programming”.

Similarly, the work of Karamouzas et al.[3] suggested a predictive method
of avoiding collisions for pedestrians. Moreover, the method that Karamouzas
et al. is what the method used in this paper is derived from. Whilst using
the method that was created in this work, the agents would predict possible
future collisions and make moves to avoid them. Karamouzas et al. noted that
this method provides smooth collision avoidance behavior along with visually
satisfying simulations in their experiments. Furthermore, Karamouzas et al.
goes on to utilize the predictive force base method that they created to avoid
collision, and they also have each agent predict collision by having them find
their future positions and detect whether it will be within the ”personal space”of
another agent.

Also, the work of Guy et al.[1] presented a solution for multiple agent simu-
lations that was based on velocity obstacles. Moreover, the algorithm produced

4



by this work was said to work well in dense simulation scenarios as well as being
able to perform faster than algorithms that came before it. The Clear Path ap-
proach also built off of the work of Berg et al.[7] which used RVO or reciprocal
velocity obstacles for the navigation of multiple agents.

More Important works in the field of collision avoidance include the works
of Reynolds [4][5], and the work of Helbing et al.[2].

The work of Reynolds[5] raised the problem of simulating a flock of birds,
or any other group of animals, moving naturally. Reynolds[5] acknowledged
how difficult it would be to scrip each bird in a flock individually, and he also
noted that a flock scripted in this manner would be hard to edit. As such,
Reynolds posed the notion that a flock was simply the result of the behavior
of individual birds when they interacted. Hence, Reynolds believed that in or-
der to simulate a flock, all that would be needed was to simulate an individual
bird with the aforementioned behaviors and create multiple instances of that
bird. To build this flock, Reynolds started with a bird object or boid that sup-
ported flight. Afterwards, behaviors that lead to simulated flocking were added.
These behaviors consisted of Collision Avoidance, Velocity Matching, and Flock
Centering. The Collision Avoidance feature of the boid models are said to be
predictive, and they also establish the minimum required separation distance
of each boid model from another. Furthermore, Reynolds called the results of
these behaviors, behavioral urges and implemented a navigation module in the
brain of each boid to manage these urges. This work is important in the field of
Collision Avoidance and Crowd Simulation because it demonstrates how colli-
sion avoidance can be combined with many other methods to achieve a natural
simulation, among other reasons.

Another work, also by Reynolds [4], addresses the issue of having virtual
characters moving around their world in a life like and natural manner. Such
a matter is very important in video games, as having natural AI behavior is
essential in creating a realistic environment. In this paper, Reynolds focused
on making autonomous agents that were life like and also had the ability to
improvise in certain situations. Additionally, Reynolds divided the behavior of
autonomous characters into three layers known as Action Selection, Steering,
and Locomotion. It was also mentioned that the behavioral hierarchy men-
tioned in this work is applicable to motion behaviors and that it is not well
suited for other non-motion related behaviors. Reynolds work focuses on the
steering layer of his behavioral hierarchy, and it also presents a version of obsta-
cle avoidance within the steering behaviors section. Within Reynolds version of
obstacle avoidance, the character and the obstacle are both treated as spheres in
theory. Additionally, the character keeps an imaginary cylinder in front of it in
order to represent its required free space. This cylinder faces forward from the
character and extends a certain distance from the center of a character based
on the characters speed and agility. Reynolds obstacle avoidance feature looks
at all objects and determines if they intersect with the cylinder. Moreover,
in Reynolds obstacle avoidance behavior, if the distance between the character
and the obstacle is greater than the sum of their radii, then Reynolds behavior
will determine that there is no potential collision. Also, the obstacle avoidance

5



either returns a steering or avoidance value, or a special value to signal if there
is no collision. Reynolds also explains a plethora of other steering behaviors for
autonomous characters such as seek, pursuit, flee, and many others.

Another instrumental work in the field of Crowd Simulation and Collision
Avoidance was the work of Helbing et al.(reference here). The work of Helbing et
al. attempted to address the issue of using pedestrian simulations to help solve
real world problems. The issues that Helbing et al. addresses include predicting
how pedestrians will act upon panicking or being jammed in a certain structure.
Also, the primary focus of this work is modeling the occurrence of escape panic.
Within this work, Helbing et al. introduced a psychological tendency of two
pedestrians to stay away from each other. Moreover, they implemented this
tendency as a repulsive force. This force acts as a version of collision avoidance
for the pedestrians. Additionally, if two pedestrians happen to touch, Helbeing
et al. also added a body force and a sliding friction force to simulate how
panicking pedestrians would act if they are touching another pedestrian.

3 Methods

After we completed simple tutorials, which included instructions on how to make
a 2d side scroller runner game, and a moving clock, we then started to utilize
skills that we had learned from the tutorial in order to take one of the first steps
towards our goal. As such, we began to create cubes on the screen that would
randomly move to a goal, and then choose a new goal.

To do this, we created cube objects in a similar manner to what we did
in the tutorial and we initially utilized the ”‘MoveTowards” method of Unity’s
”Vector3” class which moves an object towards a point on a plane. Additionally,
I generated a random goal by using the random generator class of the Unity3d
engine, and made that the point that each cube would move to. Furthermore, I
modularized the process of getting a random goal by creating a function to do
that task by itself and this function was called every time a cube reached it’s
goal. Afterwards, we proceeded to create ”prefabs” that were instances of each
object as we had learned to from the tutorial. Then, I created a function that
would instantiate each prefab upon the press of a button.

After this initial step, we started working on implementing some form of col-
lision avoidance now that I had objects moving on the screen. Our first idea was
to see if there were any common methods of achieving collision avoidance with
Unity3d. Upon search, I heard of a method called ”raycasting” which consisted
of shooting a ray in a certain direction. This method consisted of using the
”‘RayCast” method of Unity’s ”Physics” class in order to shoot the ray. After
shooting the ray in a certain direction, I would check if the ray came into con-
tact with another object in order to detect collision. However, the only problem
with this is that the objects would simply move to a random position when they
were about to collide and they would never actually reach their intended goal.
Ensuing this, we decided to use a different algorithm that consisted of each ob-
ject finding the closest object to it, and then having that object focus on moving

6



away from the closest object instead of moving towards the goal. In other words,
moving away from the closest object would take priority over moving towards
the goal depending on how imminent the collision was. To do this, I created a
vector pointing away from the closest object and a vector pointing towards the
goal. Following this, I normalized these vectors (which gave them a magnitude
of 1) and used them as the different parts that would make up any given ob-
ject’s velocity. In this first prototype, I only implemented the avoidance portion
of the velocity if the closest object was less than 2 units away. Furthermore,
I would simply add the velocity to the objects position every frame instead of
using the MoveTowards” function as before. The reason behind this change is
that manually editing the position gave me greater control over the behavior
of each object. Although this method proved to successfully produce collision
avoidance, the movement of the objects was very choppy, jerky, and sudden and
hence, it could not be used to simulate human movement well. As such, we once
again revised the current method of collision avoidance to anticipate collision
similar to the way a normal human would, instead of waiting for an object to
get very close.

The new algorithm that I started to implement is a variation of the Predictive
Force Model that was made by Dr. Ioannis Karamouzas [3] . This algorithm
uses the formula for a line intersecting a circle as it’s base, and it is derived
from there as shown below.

(P − C)2 = R2 (1)

((Po + (t ∗ V )) − C)2 = R2 (2)

(Po + (t ∗ V ) − C)2 = R2 (3)

((t ∗ V ) + (Po− C))2 = R2 (4)

((t ∗ V ) + (Po− C))2 −R2 = 0 (5)

(t ∗ V )2 + 2((t ∗ V )(Po− C)) + ((Po− C)2 −R2) = 0 (6)

(V 2) ∗ t2 + ((2V )(Po− C)) ∗ t + ((Po− C)2 −R2) = 0 (7)

(a) ∗ t2 + (b) ∗ t + (c) = 0 (8)

(a) = (V 2), (b) = ((2V )(Po− C)), (c) = ((Po− C)2 −R2) (9)

The algorithm then used these values for a, b, and c and inserted these value
in the quadratic formula to solve for the time in which the line would intersect

7



the circle. However, in reality, this would be the time that the two objects would
collide with each other. This is achieved by treating the object in question as
if it were they point, and the object that will potentially collide with it as if it
were the circle, and giving it the combined radius of both objects. Moreover,
the quadratic formula will then give out two times in which the point or object
will intersect the circle, given that the determinant is positive. Likewise, if the
times are both negative, that means that there was a collision in the past and
that they will not collide in the future.

As such, in my code, I handled situations in which the determinant was
negative, and both times were negative. Furthermore, I created a function in
my code to implement this portion of the algorithm which returned the time of
collision, regardless of the case, each frame. Also, If the determinant is negative
or if both times are negative, a special negative value is returned from my
getCollisionTime function for both of these cases. If neither of these cases occur,
the lowest non negative time for collision is returned. After the getCollisionTime
is called and returns a value in my movement function, the aforementioned
special cases are handled if they occur. To elaborate, in these cases the object
will have a portion of its velocity going towards the goal and a portion of its
velocity going away from the closest object. Moreover, the magnitude of the
second portion of the objects velocity is inversely proportional to how close it
is to the nearest object. However, in the normal cases, the objects velocity will
contain a component that points towards the goal, a component that points away
from the closest object, and a third component, called the avoidance component,
that allows the object to anticipate collision by moving away from its future
point of collision. Moreover, the avoidance component of the velocity is a vector
that points from the future position of the other object upon collision towards
the future position of the object in question, so as to move away from the point
after predicting a collision.

After applying these methods, the objects were successfully avoiding each
other whilst walking around. Afterwards, I utilized 3D models instead of cubes
or capsules as the objects in question. Following this, I used the Mecanim Ani-
mation system of the Unity3D game engine to create an animator controller for
the 3D models. This animator controller would basically control the animation
of each agent, and when the animation would play.

The last step after this was creating the GUI for the final project regard-
ing this work. To create the GUI, Unitys GUI and GUILayout classes were
used, along with the contained methods and properties. Moreover, the Window
method of the GUI class was used to create the window, and the Button, Check-
Box and TextField methods were used to further detail the GUI. Following this,
certain parts of the code were linked to the event handlers for the buttons and
textboxes so that the GUI would function as desired.

8



4 Discussion and Future Work

In this paper, we present a way to apply a variation of the Predictive Force
Collision Avoidance Model within the Unity3d Engine. Moreover, this project
allows the user to add agents upon button press, or to simulate a given amount
of agents and export the simulation to a file. Additionally, another feature of
the final program allows the user to render simulations from a file of a certain
format. This allows users to see how certain simulations would be rendered in
a specific amount of frames. Also, the final program of this paper also includes
a variation of the RVO collision avoidance model that was produced by David
Cherry, a fellow coworker in Dr. Stephen Guys lab.

There are many opportunities for future work regarding this program. One
idea includes expanding this program into a web application so that users may
simulate how agents would move in a given structure. Also, this would allow
users to study how agents would behave under specific scenarios in any structure.
Additionally, another idea could be to further develop this variation of the
Predictive Force Collision Avoidance Model so that it would be more efficient
similarly to the original Predictive Force Collision Avoidance Model created by
Karamouzas et al.[3].

5 Acknowledgements

I’d like to thank Dr. Stephen J. Guy for directing the Applied Motion lab, for
mentoring David and I throughout our research during the summer, and for
helping us work through the problems that we encountered during our research.
Id like to thank Dr. Ioannis Karamouzas for mentoring us throughout our
research this summer and for helping us work through many problems that we
encountered. Additionally, Id like to thank Julio Godoy, David Cherry, John
Koenig, Devin Lange, and Bilal Kartal for being great co workers, and for being
supportive throughout any problems that I encountered in my project.

References

[1] Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D.,
and Dubey, P. Clearpath: highly parallel collision avoidance for multi-
agent simulation. In ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (2009), pp. 177–187.

[2] Helbing, D., Farkas, I., and Vicsek, T. Simulating dynamical features
of escape panic. Nature 407, 6803 (2000), 487–490.

[3] Karamouzas, I., Heil, P., van Beek, P., and Overmars, M. H. A
predictive collision avoidance model for pedestrian simulation. In Motion in
Games. Springer, 2009, pp. 41–52.

9



[4] Reynolds, C. Steering behaviors for autonomous characters. In Game
Developers Conference (1999), pp. 763–782.

[5] Reynolds, C. W. Flocks, herds, and schools: A distributed behavioral
model. Computer Graphics 21, 4 (1987), 24–34.

[6] van den Berg, J., Guy, S. J., Lin, M. C., and Manocha, D. Recip-
rocal n-body collision avoidance. In International Symposium of Robotics
Research (2009), pp. 3–19.

[7] van den Berg, J., Lin, M., and Manocha, D. Reciprocal velocity obsta-
cles for real-time multi-agent navigation. In IEEE International Conference
on Robotics and Automation (2008), pp. 1928–1935.

10


