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Abstract 

Replica exchange molecular dynamics (REMD) has been used by researchers for improving sampling 

rates. In traditional t-REMD, individual replicas run in parallel at different temperatures.  Temperatures 

of the neighboring replicas are exchanged based on a criterion.  In this research, we implemented REMD 

on Work Queue framework and evaluated the performance of the Work Queue based REMD.  The 

master-worker framework was applied into the implementation. All replicas were assigned to workers; 

outputs from all replicas were gathered in master and processing finished. NAMD was the MD software 

package used in the implementation for the MD simulation.  The programming language used in this 

project was C. 

 

Materials and Design 

All of the work was done on a Dell, Model: PowerEdge T410 server, with an Intel Xeon X5650 CPU 

and a processing speed of 2.67G Hz. 

 

REMD was implemented on WorkQueue and embedded in a shell script that, allows the user to 

determine the number of replicas to be evaluated and the number of "workers" to be used for said 

evaluation.  This script also allows the computer to be the only "entity" involved in determining the 

speed with which REMD runs, and tracks the "runtime" of each implementation of REMD. 

 

The number of "replicas" evaluated ranged from 2 to 32, and the number of "workers" used to perform 

the evaluations ranged from 1 to 32, with a maximum number of workers determined by the maximum 

number of replicas.  The increase was achieved by doubling each replica test set until the number 32 was 

reached. 

 

Results 

Each evaluation was done five times using the same replicas each time, and an average calculated.  The 

evaluations were subdivided into test sets on the basis of the number of replicas being evaluated.  Each 

average runtime within each test set was compared to the average runtime that preceded it and the 

percentage difference was calculated.  This is depicted in Figure 1. 

 

Figure 1(a) depicts the average runtime for the 2 replica test set and the percent difference between its 

members.   

 

Figure 1(b) depicts the average runtime for the 4 replica test set and the percent difference between its 

members. 

 

Figure 1(c) depicts the average runtime for the 8 replica test set and the percent differences between its 

members. 



 

Figure 1(d) depicts the average runtime for the 16 replica test set and the percent differences between its 

members. 

 

Figure 1(e) depicts the average runtime for the 32 replica test set and the percent differences between its 

members. 

 

 

The data in Figures 1(a) and 1(b) suggests that as the number of workers increases relative to the number 

of replicas, the average runtime decreased.  A similar outcome was expected of the data in Figures 1(c) 

and 1(d) but such was not the case.  In both instances the average runtime achieved with two workers 

Figure 1: Average Runtimes 



exceeded the average 

runtime achieved with 

one worker.  After that 

point, as the number of 

workers increased 

relative to the number of 

replicas, the average 

runtime did decrease as 

expected. 

 

The data in Figures 1(a), 

1(b), and 1(c) suggests that 

the average runtime 

reached its minimum at 

the one-to- one replica to 

worker ratio.  The data in 

Figures 1(d) and 1(e) 

suggests that the minimal 

average runtime was 

achieved before the 

one-to-one replica to 

worker ratio is reached. 

 

A side-by- side 

comparison was made 

between the runtime 

averages of each replica 

test with a single worker 

and a separate side-by-side 

comparison was made 

between each replica test in 

the one-to- one ratio with 

the number of workers.  

This is depicted in 

Figure 2 

 

 

  

Figure 2: Comparison of Average Runtimes With a Single Worker & 

Comparison of Average Runtimes of Replicas in a One-To-One Ratio 

with Workers 



The data in Figure 2(a) suggests that with a single worker, as the number of replicas increased the 

average runtime also increased, there being an exception between the 4 to 1 replica test set in the 8 to 1 

replica test set.  It is at this point that the 8 to 1 replica test had an average runtime that was faster than 

that of the 4 to 1 replica test. 

 

The data in Figure 2(b) is inconclusive.  While it is a comparison of the number of replicas in a one-to-

one ratio with the number of workers, it does seem to support the idea that that as the number of replicas 

increased the average runtime increased until replica to worker number reaches 16.  Here the average 

runtime was actually faster than that found for the replica to worker number 8. 

 

Conclusion 

The results of this project suggests that REMD implemented on WorkQueue is scalable (i.e. the number 

of replicas evaluated and the number of workers can be changed up or down as needed).  The data also 

suggests that increasing the number of workers relative to the number of replicas implemented does 

reduce the average runtime, although there are points in the data that counter this suggestion. 

 

The data also suggests that for a certain number of replicas beyond 8, there is a "replica to worker" ratio 

that allows for the average runtime to reach its minimum prior to the one-to-one relationship. 

 

What cannot be determined by these results is whether WorkQueue implemented REMD is better/faster 

than REMD in the standard parallel environment. 

 

Further work 

Given that the average runtime for the replica test set of 8~2 was faster than that for 8~1, and that the 

average runtime for the replica test set of 16~2 was faster than that for 16~1, further exploration of 

REMD on the WorkQueue framework is desirable. 

 

Considering that both the 16 and 32 replica test sets reached their minimal average runtime prior to 

reaching the one-to-one replica to worker ratio, further exploration of this aspect of REMD is also 

desirable. 
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