
Implementing Replica Exchange Molecular Dynamics Using

Work Queue

Maritza Smith-Romero

Department of Computer Science,

Southern University A&M College, Baton Rouge Louisiana

Abstract

Replica exchange molecular dynamics (REMD) has been used by researchers for improving sampling

rates. In traditional t-REMD, individual replicas run in parallel at different temperatures. Temperatures

of the neighboring replicas are exchanged based on a criterion. In this research, we implemented REMD

on Work Queue framework and evaluated the performance of the Work Queue based REMD. The

master-worker framework was applied into the implementation. All replicas were assigned to workers;

outputs from all replicas were gathered in master and processing finished. NAMD was the MD software

package used in the implementation for the MD simulation. The programming language used in this

project was C.

Materials and Design

All of the work was done on a Dell, Model: PowerEdge T410 server, with an Intel Xeon X5650 CPU

and a processing speed of 2.67G Hz.

REMD was implemented on WorkQueue and embedded in a shell script that, allows the user to

determine the number of replicas to be evaluated and the number of "workers" to be used for said

evaluation. This script also allows the computer to be the only "entity" involved in determining the

speed with which REMD runs, and tracks the "runtime" of each implementation of REMD.

The number of "replicas" evaluated ranged from 2 to 32, and the number of "workers" used to perform

the evaluations ranged from 1 to 32, with a maximum number of workers determined by the maximum

number of replicas. The increase was achieved by doubling each replica test set until the number 32 was

reached.

Results

Each evaluation was done five times using the same replicas each time, and an average calculated. The

evaluations were subdivided into test sets on the basis of the number of replicas being evaluated. Each

average runtime within each test set was compared to the average runtime that preceded it and the

percentage difference was calculated. This is depicted in Figure 1.

Figure 1(a) depicts the average runtime for the 2 replica test set and the percent difference between its

members.

Figure 1(b) depicts the average runtime for the 4 replica test set and the percent difference between its

members.

Figure 1(c) depicts the average runtime for the 8 replica test set and the percent differences between its

members.

Figure 1(d) depicts the average runtime for the 16 replica test set and the percent differences between its

members.

Figure 1(e) depicts the average runtime for the 32 replica test set and the percent differences between its

members.

The data in Figures 1(a) and 1(b) suggests that as the number of workers increases relative to the number

of replicas, the average runtime decreased. A similar outcome was expected of the data in Figures 1(c)

and 1(d) but such was not the case. In both instances the average runtime achieved with two workers

Figure 1: Average Runtimes

exceeded the average

runtime achieved with

one worker. After that

point, as the number of

workers increased

relative to the number of

replicas, the average

runtime did decrease as

expected.

The data in Figures 1(a),

1(b), and 1(c) suggests that

the average runtime

reached its minimum at

the one-to- one replica to

worker ratio. The data in

Figures 1(d) and 1(e)

suggests that the minimal

average runtime was

achieved before the

one-to-one replica to

worker ratio is reached.

A side-by- side

comparison was made

between the runtime

averages of each replica

test with a single worker

and a separate side-by-side

comparison was made

between each replica test in

the one-to- one ratio with

the number of workers.

This is depicted in

Figure 2

Figure 2: Comparison of Average Runtimes With a Single Worker &

Comparison of Average Runtimes of Replicas in a One-To-One Ratio

with Workers

The data in Figure 2(a) suggests that with a single worker, as the number of replicas increased the

average runtime also increased, there being an exception between the 4 to 1 replica test set in the 8 to 1

replica test set. It is at this point that the 8 to 1 replica test had an average runtime that was faster than

that of the 4 to 1 replica test.

The data in Figure 2(b) is inconclusive. While it is a comparison of the number of replicas in a one-to-

one ratio with the number of workers, it does seem to support the idea that that as the number of replicas

increased the average runtime increased until replica to worker number reaches 16. Here the average

runtime was actually faster than that found for the replica to worker number 8.

Conclusion

The results of this project suggests that REMD implemented on WorkQueue is scalable (i.e. the number

of replicas evaluated and the number of workers can be changed up or down as needed). The data also

suggests that increasing the number of workers relative to the number of replicas implemented does

reduce the average runtime, although there are points in the data that counter this suggestion.

The data also suggests that for a certain number of replicas beyond 8, there is a "replica to worker" ratio

that allows for the average runtime to reach its minimum prior to the one-to-one relationship.

What cannot be determined by these results is whether WorkQueue implemented REMD is better/faster

than REMD in the standard parallel environment.

Further work

Given that the average runtime for the replica test set of 8~2 was faster than that for 8~1, and that the

average runtime for the replica test set of 16~2 was faster than that for 16~1, further exploration of

REMD on the WorkQueue framework is desirable.

Considering that both the 16 and 32 replica test sets reached their minimal average runtime prior to

reaching the one-to-one replica to worker ratio, further exploration of this aspect of REMD is also

desirable.

Acknowledgments

Due to the assistance of Graduate Student Zangwei Li, Graduate Student Jin Niu, Professor Alvin Allen

and my mentor, Dr. Shuju Bai, I was able to complete this challenging project.

I learned far more than anticipated and I am grateful.

[1] Anthony Canino, Jesus A Izaguirre, and Douglas Thain Dinesh Rajan, "Converting A High

Performance Application to an Elastic Cloud Application," in 2011 Third IEEE International

Conference on Cloud Computing Technology and Science, Notre Dame, 2011, pp. 383-390.

[2] Zachary W Ulissi, "Replica-Exchange Molecular Dynamics on Hadoop," MIT, Cambridge, Rep

18.337 Final Report, 2011.

[3] Muan Hong Ng, Steven Johnston, Stuart E Murdock, Bing Wu, Kaihsu Tai, Hans Fangohr, Paul

Jeffreys, Simon Cox, Jeremy G Frey, Mark S.P Sansom and Jonathan W Essex Christopher J Woods.

(2012, June) rsta.royalsocietypublishing.org. [Online].

http://rsta.royalsocietypublishing.org/content/363/1833/2017.ful

[4] Dinesh Rajan, Badi Abdul-Wahid, Jesus Izaguirre, Douglas Thain Peter Bui, Work Queue + Python:

A Framework For Scalable Scientific Ensemble Applications, 2011, Workshop on Python for High

Performance and Scientific Computing at SC11.

http://rsta.royalsocietypublishing.org/content/363/1833/2017.ful

