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I. Abstract

WordsEye is a text-to-scene generation program that creates a 3D scene from descriptive English
text. For example, the sentence ”The cat is on the chair” results in a scene with a cat sitting on
a chair. Twitter provides a way to reach many potential WordsEye users, due to the increasing
popularity of social media and the large number of Twitter users. For this reason, I worked
on creating and uploading 3D WordsEye scenes from tweets. Generating descriptive sentences
from tweets is an interesting challenge because tweets are limited to 140 characters and contain
Internet slang, emoticons, misspellings, and Twitter lingo such as hashtags and retweets. For
simplicity, I focused on filtering tweets for only four verbs (like, love, hate, and see), as well
several different emotions such as happy or sad. I used part of speech tags to extract the subject
and object of each verb/emotion, WordsEye attributes such as colors or textures, and whether or
not the verb or emotion was negated (i.e. ”do not like”). Using this information, I generated text
that is compatible with WordsEye. For example, the tweet ”Yay!” would become ”The person
is happy.” The final result is a 3D WordsEye image uploaded to Twitpic and a tweet posted to
the WordsEye Twitter account. I wrote several Python scripts to automate the entire process.

II. Introduction

WordsEye is a text-to-scene generation project started by Bob Coyne, which generates 3D scenes
from English text. An example of a 3D scene, along with its corresponding text, is shown in
Fig. 1. The user can choose a specific object from several options, as well as specify the texture,
color, and size of objects; the placement of lights; and the position of the camera. However, there
is the limitation that the text must be very specific and grammatically correct: you cannot use
simply any text to generate a scene, or it may result in an error.

Twitter is a good way to reach millions of people because there are over 190 million Twitter
users and over 65 million tweets every day (Jiang, Zhou, & Zhao, 2011), and the number of
users is continually increasing as the popularity of social media grows. Communication is quick
and easy. Users have instantaneous access to current events and to others’ openly expressed
opinions. For all these reasons, Twitter provides a way to reach many potential WordsEye users,
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Fig. 1. A sample WordsEye scene. The text used to generate this scene is: ”the orange cat is on the chair. the chair is white. the ground
has a design texture. the ground is shiny. the huge yellow illuminator is 7 feet above the cat.”

which is the motivation for combining WordsEye with Twitter.

The language used in Twitter is interesting for several reasons. First, tweets are very short. They
are limited to only 140 characters. Tweets also contain unique Twitter lingo, such as hashtags,
@usernames, and retweets. Tweets contain Internet slang, such as ”lol” for ”laugh out loud”
or ”omg” for ”oh my God”. They have emoticons, which are punctuation symbols arranged in
such a way as to represent faces expressing particular emotions. Words are often misspelled, and
tweets are rarely grammatically correct. Users often swear or use slang, and they can include
links to websites. Finally, tweets are often not even in English.

My project was to filter tweets for those that contain simple verbs or emotions, extract the
information necessary to generate a scene with WordsEye, and to post a tweet with the resulting
WordsEye scene. Fig. 2 shows the overall process, starting with finding tweets on Twitter. My
Python script processes and filters the tweet, and generates English text that is input into
WordsEye. The 3D scene generated from WordsEye is finally uploaded to Twitpic.

III. RelatedWork

Twitter has recently become an extremely popular research topic. Researchers have worked on
natural language processing (NLP), sentiment analysis, and topic extraction of tweets. Businesses
and government are using Twitter as sources of people’s opinions about various products and
political issues.

Several researchers have specifically looked into how to process and normalize tweets. (Han
& Baldwin, 2011) describe an algorithm for replacing misspelled (or ill-formed) words with the
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Fig. 2. A diagram of the overall process for obtaining, processing, and filtering tweets, as well as using WordsEye to generate scenes and
uploading scenes to Twitpic.

correct English words, a process called lexical normalization. (Liu, Weng, Wang, & Liu, 2011)
explain how to normalize text messages, which are similar to tweets because both are short
in length and contain Internet acronyms and emoticons. Part of speech tagging for Twitter is
described in detail by (Gimpel, et al., 2011).

Many researchers have also worked on opinion mining with Twitter, or sentiment classification
of tweets, as done by (Jiang, Zhou, & Zhao, 2011). Although not specific to Twitter, (Kim &
Hovy, 2006) worked on extracting opinions, opinion holders, and the topic of the opinions in
online news media text. Similarly, (Das & Bandyopadhyay, 2010) extracted emotion topics from
blog sentences, which is just a different form of online text. (Stoyanov & Cardie) describe the
process of extracting the topics of opinions. Finally, (Gonzalez-Ibanez, Muresan, & Wacholder,
2011) worked on identifying sarcasm in tweets, which is even more challenging than identifying
obvious emotions.

IV. Method

There are a couple options for obtaining publicly released tweets using the Python Twitter API.
The first is simply getting 20 random tweets a minute. The other is getting 100 tweets a minute
that are filtered for a specific keyword. However, we decided to use tweets that posted a photo
because the photo could be inserted into the WordsEye scene. This method requires reading
the 40 most recently posted Twitter images from the live feed on twitcaps.com and extracting
the tweet and username associated with each image. Unfortunately, this option provides less
information about the user who posted the tweet than is provided by the Twitter API. Fig. 3
shows an example of an image and its associated tweet which would appear on twitcaps.com.

The next step after obtaining the tweets is to normalize them, or to standardize the language of
the tweets so that the Twitter lingo is replaced with standard English. For example, emoticons
are replaced with the emotion words they represent, and acronyms are replaced with the full
words. Hashtags and @usernames are removed from the tweet, but are saved for the purpose
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Fig. 3. A photo and tweet posted to Twitter, taken from twitcaps.com/feed.

of tweeting back. This step also includes searching for unknown words that contain multiple
repeated letters and testing whether the word is known when the repeated letters are replaced
with only a single letter or a letter that is only repeated once. For example, ”wooooooooow”
would be replaced with ”wow”.

Tweets that are not English, or contain greater than 50% unknown words (i.e. they do not appear
in a list of English words), are immediately thrown out. We decided to only use tweets that have
one of the four verbs ”like”, ”love”, ”hate”, and ”see” or that have an emotion, since emotions are
commonly expressed through tweets. I created several emotion categories, including happy, sad,
and angry, and assigned emotion words from LIWC (the Linguistic Inquiry and Word Count)
to the appropriate category. I could then check whether tweets mentioned a word from any of
the emotion categories. We have iconic representations for emotions, as well as other abstract
ideas. For example, like and love are represented by hearts, while hate is represented by a heart
inside a not sign.

For each verb and emotion, I used part of speech (POS) tags to extract the subject and object,
attributes of the subject and object (if any), and whether or not the verb or emotion was negated.
For verbs, I also checked whether the subject or object was experiencing an emotion. The subject
and object attributes can be known WordsEye colors/textures/national flags, or they could be
unknown to WordsEye and displayed in the scene with text above the corresponding subject or
object. If the verb or emotion is negated, it can be represented by a not sign around the entire
scene. If the subject or object is a gendered word such as ”he” or ”she”, or is the author of the
tweet, I turned the subject into ”man” or ”woman”, since these are known WordsEye objects.
In order to determine the gender of the author, I tried to match the username with a name on
a list of baby names for boys and girls. If the search was unsuccessful, I represented the author
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as a generic ”person”, which is also a recognized WordsEye object.

Certain celebrities, such as Justin Bieber, are often mentioned in tweets. I used the program
FaceGen to create 3D models of the faces of celebrities and politicians mentioned most often
on Twitter. If one of these people is mentioned in a tweet, then the model of that person can
be included in a WordsEye scene. An example of some of the 3D faces I modeled by fitting to
photos found on Google Images is shown in Fig. 4.

Fig. 4. Examples of celebrity faces modeled in 3D using FaceGen.

Extracting the subject and object of verbs required two algorithms, one for active verbs and one
for passive verbs. This is because the subject comes before an active verb, and the object comes
after an active verb, whereas the placement is reversed for passive verbs. In the example ”The
woman likes the flowers”, the subject is ”woman”, and the object is ”flowers” because ”likes”
is an active verb. However, in the sentence ”The flowers are liked by the woman”, the object is
still ”flowers” even though it comes before the verb.

Extracting the subject and object of emotional adjectives also required two algorithms, one for
direct emotion words and one for implied emotion words. I noticed that there are emotion words
which directly describe how a person is feeling, whereas other types of emotion words imply
that the speaker is feeling a certain way. In the examples ”I am so happy” and ”He is bored”, the
emotion words ”happy” and ”bored” directly describe how the subject of the emotion is feeling.
However, in the examples ”This movie is dull” and ”The view is beautiful!”, the word ”dull”
implies that the speaker is bored by the movie, and the word ”beautiful” and the exclamation
point imply that the speaker is happily excited about the view.

Finally, I realized I needed to also specify whether an emotion verb was active or passive (note
that these terms do not refer to the part of speech of the verb, but to how the placement of
the subject and object relate to the verb). For example, in the sentence ”She loves music”, the
subject of the emotion (or the person experiencing the emotion) is the same as the subject of
the verb, and the object of the emotion (or whatever is causing the emotion to be experienced)
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is the same as the object of the verb. However, in the sentence ”That sound annoys me”, even
though the verb ”annoys” would be tagged as an active verb, the subject of the emotion comes
after the verb, while the object causing the emotion comes before the verb. For emotion verbs
such as ”annoys”, I had to use the algorithm for extracting the topic of a passive verb, even
though ”annoys” is technically an active verb.

Using the extracted information, I generated descriptive, grammatical sentences that could be
input into WordsEye. The patterns shown in Fig. 5 are how I turned the verb, emotion, and photo
information into grammatically correct sentences that are compatible with WordsEye. The verbs
would change tense depending on whether or not there was negation and whether the subject
was singular or plural. I also manually assigned each emotion word its correct preposition. For
example, you might say ”happy about X”, but ”bored by Y”.

Fig. 5. The three templates I used for generating sentences with the extracted verb and emotion information.

V. Results

Fig. 6 shows an example of a tweet that might be obtained randomly and would be processed
and filtered. The tweet contains several hashtags, as well as a username and a link. Normalizing
the tweet would result in ”It’s a nice chill afternoon. Happy with the races today.” This tweet
would pass through the filter because it contains the emotion words ”nice” and ”happy”. The
output sentence would include the subject and object with the appropriate emotion: ”The person
is happy about the chill afternoon.”

Fig. 6. A sample tweet.
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An example of a sentence that could be generated by my Python script is ”The woman hates the
platypus.” Inputting this sentence into WordsEye generates the 3D scene shown in Fig. 7. The
platypus is placed upon a table in front of the iconic representation for hate. As shown in Fig. 8,
the sentence ”The girl is excited about Justin Bieber” results in a scene with Justin Bieber inside
a thought bubble above a girl’s head. Although Justin Bieber’s face is too small to recognize,
the scene does use the FaceGen model of his face.

Fig. 7. A WordsEye scene generated from the sentence ”The woman hates the platypus”.

Fig. 8. A WordsEye scene generated from the sentence ”The girl is excited about Justin Bieber”.

The way we incorporated photos into scenes was by inputting the sentence ”There is a small
[filename] billboard” into WordsEye. WordsEye would place the photo with the corresponding
filename onto a billboard in the background of the scene, as shown in Fig. 9. Finally, the sentence
”Barack Obama is angry at the Republican elephant” would use the FaceGen model of Barack
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Obama and shape it into an angry expression (see Fig. 10).

Fig. 9. A WordsEye scene generated from the sentence ”There is a [pic/1.jpg] billboard”, where pic/1.jpg is the filename of a photo.

Fig. 10. A WordsEye scene generated from the sentence ”Barack Obama is angry at the Republican elephant.”

Once WordsEye generates a 3D scene, my Python script automatically uploads the image to
Twitpic. The benefits of using Twitpic to host the images are that we can include a message not
limited to 140 characters and we can use the Twitpic API to do traffic analysis (i.e. determine
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the number of times a specific image has been viewed). Fig. 11 shows an example of what the
uploaded Twitpic image and message look like. In the message, I describe the process of taking
a tweet and transforming it. I also include a link to WordsEye and suggest trying it out.

Fig. 11. A WordsEye scene and the associated message uploaded to the WordsEye Twitpic account.

The final step of the process is to post a tweet to the WordsEye Twitter account I created. The
tweet contains a link to the Twitpic image, as well as a WordsEye hashtag (and the username
of the original tweet’s author if we have high confidence in the scene). An example is shown in
Fig. 12.

Fig. 12. A tweet posted to the WordsEye Twitter account containing a link to a Twitpic image and the WordsEye hashtag.

VI. Conclusions and FutureWork

The first pass of the process has been successfully accomplished, and we can now run a single
Python script to automatically filter tweets, create WordsEye scenes, upload Twitpic images,
and post tweets. Approximately 25% of all random tweets are filtered, and about 75% of those
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filtered tweets output logical sentences.

However, there are still many improvements that can be made to this whole process. The
WordsEye scenes can be made more visually appealing by incorporating WordsEye locations
such as a living room or office, as well as the time of day. For example, the scene could be dark
at night, or the position of the sun can change depending on the time of day. There are many
WordsEye verbs that are currently being annotated and which could be added to the existing
four verbs. This would add variety to the types of scenes we can generate. The algorithm for
extracting the subject and object of the verbs and emotions can be improved through pattern
matching or parsing. Finally, the process requires further testing and debugging.
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