
Running head: Anywhere Apps 1

Anywhere Apps:

JavaScript and Browser Ubiquity

Avery L. Erwin-McGuire

The University of Massachusetts Amherst

Anywhere Apps 2

Abstract

 Anywhere Apps is a research project currently being developed by Tim Richards and

Emery Berger at the University of Massachusetts. The focuses of the project include the division

between the client and the server, the browser serving as a universal operating system, and

JavaScript functioning as an assembly language. Presently, research participants are developing a

client-side cache which utilizes a server as main memory.

Anywhere Apps 3

Discussion

Initially the research was largely concerned with compiled JavaScript. It was thought that JavaScript

could be thought of as an assembly language for the web (Zakai, 2011). As the development of

JavaScript was rushed, it has certain odd characteristics which can be difficult to comprehend and work

with. One example of this is scoping, unlike most modern languages JavaScript only has a global and

functional scope. This can lead to tremendous namespace pollution and unexpected errors. The

obscure design of this language is similar in this way to assembly, where commands relate directly to

hardware components and mystify those who are not well versed in the architecture. Planning out and

hand writing a program in assembly is not a common activity; such tasks are left for compilers.

 There are several available JavaScript compilers, including GWT, Pyjamas, Emscripten, and

Closure. Much of the research focused on code produced through GWT. Through writing out simple

programs and considering the output, it was deduced that GWT simply matched up the functionality

available in JavaScript to existing Java libraries. Certain libraries which exceeded the capabilities of

JavaScript were simply disallowed within the project. Upon compile, the code was optimized through

the v8 engine and produced JavaScript code nearly unreadable to humans. This result was reminiscent

of programs written in assembly, and gave further evidence to the research idea.

 With high level languages, programmers need not consider the intricacies of their machine and

its architecture. Tasks such as fetching data, clearing registers, and minding the stack are left to the

domain of the compiler and its assembly. The complexity of the system is hidden by abstraction. The

web is increasingly becoming a new system to itself, with the browser behaving as an operating system.

However, the current structure of the web requires that programmers remain aware about the physical

structure of the system for which they write. Developers must be mindful of and write code which

reflects the divide between the client and the server – even though that divide is ultimately physical in

Anywhere Apps 4

nature. Utilizing JavaScript as an assembly language for the web, one could abstract away the

architecture and leave programmers able to write code in whichever language they desire, only

concerning themselves with proper programming paradigms. Moreover, as the web grows it becomes

increasingly difficult to keep up with the fast paced rate of development(Silva, 2012), and compilers

could help with such lag time.

Researchers began looking into producing a client side cache, where the server functioned as

main memory. This utilized HTML5 local storage, which saves an array of string key/value pairs within

the browser. Within a single machine, there are physical divisions between cache and main memory.

This can be seen as a parallel to the division between the client and the server. Therefore by

implementing a client side cache, it can be shown that the underlying structure of the web can be

abstracted away.

The program had several components: the client, the server, and the communication between

the two. Researchers aimed to formalize the messages sent across the network in order to make them

resemble calls for data within a single machine. These calls were known as “readLine” and “writeLine”

and were GET and POST requests respectively. The commands allowed the communication and

manipulation of “file” objects, which were a very simplified version of their namesake. Within the scope

of the project, a file consisted of a single character as a file name such as “A” or “C” and four lines of

text. The server’s file system contained the files “A”, “B”, “C”, and “D”.

Upon loading the page the client had access to a simple interface to load a file to the screen,

edit it, and save the changes. When a file was requested, the page’s JavaScript code would attempt to

load the lines “C0” “C1” “C2” “C3” where C is the name of the file. This would occur by querying local

storage, which is a key/value array. If the value did not exist locally, the client would send a “readLine”

GET request to the server which carried all the relevant data within a URL parameter.

Anywhere Apps 5

 In order to further simulate a cache, there was an artificial limit of 10 values imposed on the

local storage. This meant that upon reaching 10 values, the client must begin to release data in order to

store new values. Local storage sorts its keys alphanumerically rather than by the time of assignment.

This meant that researchers had to simultaneously push the key values to a queue so as to know which

values were the oldest, and so were to be release from local storage. As the readLine request returned

the relevant line to the client, it was saved into local storage. The saving process included releasing the

oldest stored data once the size limit was reached. When data was stored locally the server was not

contacted. This implemented the efficiency of a cache (Franklin, Carey & Livny, 1997).

When the user selected for some modified data to be saved, the client would check to see which

values entered differed from those in storage. The modified lines were communicated to the server with

a “writeLine” POST request, where the data was carried in URL parameters.

When the server received any communication from the client, it would identify the request as

either being a JavaScript or HTML request, or a command. Commands took the form “GET readLine/” or

“POST writeLine/” . The parameters of these requests held the file name, the line number, and in the

case of writeLine the data to be stored. The file system was then accessed and the relevant actions were

taken. A confirmation or the data requested would then be sent back to the client.

There were several problems with this model, and in the future these problems will be

addressed and improvements made. One factor researchers will consider is the form of the request. The

code currently utilizes synchronous AJAX requests, which could be changed to asynchronous in order to

save time. Additionally, the method to save and release data is inefficient. This is because the client does

not take into account which file it is currently trying to load, and will begin to release lines of the file

locally if it is the oldest data. This leads to necessary data being released and re-requested. In the future,

researchers will insert new code to prevent this case.

Anywhere Apps 6

Researchers plan to extend this project once the problems listed above are addressed. There are

several possible features which will be included in the next version of the cache. These may include

more diversity and complexity in the file format, or perhaps only serving bytes rather than strings. The

user may be able to create files locally and have these files communicated to the server in a single

“writeFile” request. Another avenue under consideration is handling the case where multiple users may

be accessing the server’s file system simultaneously. This would require the programmers to implement

a version history documenting the editing of files, so as to ensure the client’s cache is up to date.

Anywhere Apps 7

References

Franklin, M., Carey, M., & Livny, M. (1997). Transactional client-server cache consistency: Alternatives

and performance. ACM Transactions on Database Systems, Vol. 22(No.3), Pages 315–363.

Silva, C. (2012). Reverse engineering of gwt applications. EICS’12,

Zakai, A. (2011). Emscripten: An llvm-to-javascript compiler. SPLASH’11 Companion, Portland, Oregon,

USA.,

