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1 Introduction

Major histocompatibility complex (MHC) is responsible for recognizing infectious agents, such as HIV, that
enter the body. MHC can activate the immune response by binding to T-cell receptors (TCR). Previous
studies of molecular binding often only considered the static shapes of the molecules; however, protein motion
is critical to TCR-MHC interaction, and is often instrumental in determining whether binding will occur.
In a previous study, it has been shown that MHC can have an influence on the speed of AIDS progression.
HIV-1 peptides that are bound to the MHC are critical in AIDS protection [15]. An important step in vaccine
development is determining which peptides will bind to MHC, which will allow the peptide-MHC complex
to be presented to TCRs and start an immune response. Similar to the importance of protein movement,
the interaction of a peptide and a receptor can cause physiological changes. One ligand, IgE-FcǫR, and
receptor, 1RFO, have been linked to allergies. However, different clusters of IgE-FcǫR trigger very different
physiological responses [17]. The challenge is determining what protein and ligand motions increase and
decrease binding propensity, as well as how IgE-FcǫR and 1RFO clusters form.

This project simulates the movements of molecules in order to determine how proteins, specifically MHC
and TCR, as well as IgE-FcǫR and 1RFO, bind together. Articulated linkages are used to simulate proteins
and ligands because, like proteins and ligands, they are made up of chains and joints that bend and revolve
independently. Also, coarse grained rigid representations are used. Probabilistic roadmap methods (PRMs)
were used to build graphs corresponding to approximate maps of the molecule’s energy landscape. It builds
a roadmap by generating nodes, which here involves sampling valid protein conformations, and connecting
selected nodes, or conformation states, with energetically feasible transitions, using a local planner [18]. The
roadmaps may then be used to determine the most energetically likely transitions between conformations,
using the best path between two nodes on the roadmap [6]. We built roadmaps of multiple systems in order
to model protein and ligand-receptor movement.

Modeling protein and ligand movement using PRMs makes it possible to gain an understanding of the
conformational changes that occur during the binding. We show dynamic views of molecular interactions
with a low computational expense. This will hopefully improve vaccine development through a better
understanding of protein binding propensities.

2 Related Work

2.1 Protein Motion Planning

The motion planning (MP) problem asks how to find a sequence of valid state transitions that takes an
object, such as a robot, from an initial state to a goal state [29]. PRMs build roadmaps in order to search for
solutions to MP problem instances. Conformations, or roadmap nodes, are sampled from the configuration
space, also known as C-space, and then transitions between ‘nearby’ conformations are encoded as roadmap
edges. A roadmap of a single rigid body is shown in Figure 1. In this figure, the green is the node generations.
The large blue blocks are the obstacles that the robot must move around, and the small blue cube is the
robot. The lines connecting the node generations are the possible connections that can connect the each
node generation, allowing the robot to move from one configuration to another. In a previous study, PRMs
were used on articulated linkages [29]. In this study, only robots with an arbitrary number of joints were
considered. Each joint has limits that is dependent on the structure of the protein, which inhibit the range of
motion. As each robot is moved in the C-space, all of the joints must be within their limits [12]. Articulated
linkages are good representations of proteins because proteins are made up of atoms and bonds that bend
and revolve independently.

When creating roadmaps for proteins, nodes are retained based on their energy level. The roadmap
that is produced is an approximation of a molecule’s energy landscape, and the quality is contingent on the
sampling strategy. Ideally, the nodes will be placed throughout the roadmap, and not simply near the native
state of the protein. This will give a roadmap that captures the true range of motion for the protein. Once
the nodes are generated, they are connected to their k-closest neighbors. Thousands of paths between a
start and goal confirmation are extracted, and the highest quality path is chosen. The roadmap is shown in
Figure 2.
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Figure 1: A sample roadmap of a rigid body, a small blue box, in an environment with two flat obstacles, large blue
rectangles, with a narrow space between them. The green boxes are the node generations of the robot. The lines are
the connections formed between the node generations, showing how the robot can move from one node generation to
another.

Figure 2: A PRM roadmap for molecular folding shown imposed on a visualization of the molecules energy landscape:
(a) after node generation (note sampling is denser around N, the known native structure), (b) after the connection
phase, and (c) using it to extract folding paths to the known native state.

Our PRM framework, which was originally developed for robotic motion planning, has been successfully
applied for molecular motions to study protein folding and motion [27, 28, 31]. Our strategy prefers low
energy confirmations and transitions. During the sampling phase, lower energy samples have a higher
retention probability, and during the node connection, each connection is determined by the energies of
all the intermediate conformations along the transitions. Therefore, the shortest paths in the roadmap
correspond to the most energetically feasible paths, or the least-weight paths between configurations, and
thousands of feasible pathways are encoded by roadmaps. PRM-based approaches have also been applied to
several other molecular domains [1, 2, 5, 21, 22, 23, 24, 30]. Singh, Latombe, and Brutlag first applied PRMs
to protein/ligand binding [21]. Another PRM variant later explored this problem with additional success
[5]. We have applied PRMs to model protein folding pathways [27, 28, 31] and RNA folding kinetics [25, 26].
PRMs have also been used by other groups to study molecular motions [3, 4, 7, 8].

Potential Energy Calculation. To calculate the energy function, a step function approximation of the
van der Walls component is used. If two side chains are too close, a potential energy above the disqualification
threshold is returned. Otherwise, the potential is:
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Utot =
∑

restraints

Kd{[(di − d0)
2 + d2c ]

1/2 − dc}+ Ehp (1)

where Kd is 100 kcal/mol and d0 = dc = 2Å [14]. Full details can be found in [2].
Biased Sampling. All of our samples are based on their energy. A sample q, with potential energy Eq,

is accepted with probability:

Prob(accept q) =







1 if Eq < Emin
Emin−Eq

Emax−Emin
if Emin ≤ Eq ≤ Emax

0 if Eq > Emax

(2)

where Emin is the potential energy of the open chain and Emax is 2Emin. The quality of the roadmap is
dependent on the sampling strategy. Generally, we are most interested in regions ‘near’ the target confor-
mation, so we concentrate sampling there.

Connecting the Roadmap. We attempt to connect each node in the roadmap with its k closest
neighbors. To connect the roadmap, the two nodes, q1 and q2, are labeled with edge weights that express
the viability of transitioning between the two. First, all the intermediate nodes that connect q1 to q2,
q1 = c0, c1, ..., cn−1, cn = q2, are identified. Then, for each pair of consecutive confirmations ci and ci+1, the
probability P1 of transitioning from ci and ci+1 depends on the difference between their potential energies
∆Ei = E(ci+1)− E(ci):

Pi =

{

e
−∆Ei

kT if ∆Ei > 0
1 if ∆Ei ≤ 0

(3)

This helps keep the balance between the two adjacent states and allows the edge weight to be calculated
by summing the logarithms of the probabilities for all of the pairs of consecutive conformations. Since this
defines the edge weight, when extracting a path, we can use graph search algorithms to discover the most
energetically feasible pathways.

In previous work [2], there are provided methods for building an approximate map of a protein’s potential
energy landscape. These roadmaps give an approximate view of a protein’s folding landscape. In the past,
low-energy pathways and validated secondary structure formation order have been successfully extracted.

2.2 Feature-Sensitive Motion Planning

There are many different solutions to the MP problem, because they are high dimensional problems that
make complete MP solutions computationally intractable, with each solution having pros and cons. Many
environments exist which can be mapped out using PRMs, including proteins. One such solution to the
MP problem is Feature-Sensitive motion planning [18], which has been used in previous work. In Feature-
Sensitive motion planning, the C-space is divided into regions that are suited to a method in the library of
motion planners. Then, depending on the type of region, the best-suited method is applied to each region,
and all of the region roadmaps are combined to create a roadmap of the entire C-space [18]. While this
gives a detailed roadmap of varied environments, in order for each region to be correctly identified, many
examples of each type of C-space must be implemented first, to allow a machine learning algorithm to learn
how to classify regions.

2.3 Ligand-Receptor Interactions

When a ligand binds to a receptor, the shape of the three dimensional receptor is altered. This can cause
physiological responses; for example, when the antigenspecific IgE antibody binds to FcǫR, which then
establishes antigen recognition by mast cells, which play a role in allergy response, wound healing, and
defense against pathogens [13]. When IgE-FcǫR interacts with an antigen, a clustering of FcǫR is formed,
which initiates a signal that causes the release of histamines and other allergic reaction mediators [16]. In
previous studies, various reagents have been used to induce the clustering of FcǫR, showing that the signaling
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and cellular responses are dependent on the properties of the FcǫR accumulations [9, 10, 11, 20, 32]. It has
been reported that the synthesis of a trivalent antigen can originate a cellular secretory response, but a
structurally similar bivalent antigen did not cause detectable levels of secretion [19]. Previous studies have
also shown the clustering of IgE-FcǫR induced by trivalent antigens differs greatly from clustering of IgE-
FcǫR induced by bivalent antigen [17]. Because it triggers different responses, it is important to investigate
the clustering of IgE-FcǫR complexes caused by trivalent antigens [17].

3 Application: Parameter study

In this section we are studying the parameters for node generation of proteins. This work is particularly
useful to our feature-sensitive MP work since the best parameters we find can be used as starting points for
automated parameter searches.

TCR: Number of Samples = 100

Figure 3: The number of samples = 100 for TCR. The number of rejections is graphed against the standard angle.
PFlex is varied between 0.1 - 0.006, and PRigid is varied between 0.05 - 0.0005.

Rigidity analysis identifies the rigid and flexible parts of a protein, which are then perturbed according to
their flexibility. This helps to provide a physically realistic way to perturb conformations. The parameters
that were adjusted were the probability that a portion of the structure that is labeled as flexible is perturbed,
also known as PFlex, and the probability that a portion of the structure that is labeled as rigid is perturbed,
known as PRigid. Where the nodes were produced was also discerned. The layers determine how folded the
protein is, with layer 9 being the native state and completely folded, and layer 0 the most unfolded state.
Since each layer has a different numbers of native contacts, ideally, the nodes will be distributed across many
layers, and just not focused around the native state. The better the distribution of nodes across multiple
layers, the higher the quality of the nodes that are produced.

For the parameter study, I focused on TCR and Alpha-1-Antitrypsin (1QLP). TCR was studied because
when molecules such as MHC bind to it, an immune response is activated. 1QLP was studied because it is
larger than TCR and MHC. 1QLP has 372 residues, while TCR only has 200 residues. Also, 1QLP is highly
studied, and is a mixed structure protein. It can aggregate and has been linked to diseases such as chronic
obstructive pulmonary disease, or COPD.
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(a) PFlex = 0.1, PRigid = 0.05 (b) PFlex = 0.1, PRigid = 0.0005

(c) PFlex = 0.06, PRigid = 0.05 (d) PFlex, PRigid = 0.0005

Figure 4: The protein studied is TCR. The number of nodes produced in each layer for every run is graphed. In (a),
the number of nodes generated in every layer is graphed for PFlex = 0.1 and PRigid = 0.05. In (b), the number of
nodes generated in every layer is graphed for PFlex = 0.1 and PRigid = 0.0005. In (c), the number of nodes generated
in every layer is graphed for PFlex = 0.06 and PRigid = 0.05. In (d), the number of nodes generated in every layer is
graphed for PFlex = 0.06 and PRigid = 0.0005.

3.1 Methods

The parameters that were changed were PRigid and PFlex. For large proteins, such as TCR and 1QLP, the
PRigid and PFlex values should be fairly low. Also, it is logical to keep the PRigid value below the PFlex

value. For TCR, PRigid was kept between 0.05-0.0005, while PFlex was kept between 0.1-0.06. For 1QLP,
only the PFlex values were adjusted, and were kept between 0.1-0.02, with the PRigid value kept at a constant
0.01. The standard angles for the proteins were kept low, between 0.5 and 10.0. The data for each layer
were captured in every run to see the quality of the node placement, as well as the time each run took to
complete. The number of rejections for every angle were graphed, as well as the distribution of the nodes for
every protein. Then, the best parameters were chosen based on the least number of rejections, the quality
of the nodes produced, and the time each run took to complete.

3.2 Results

For the first tests for TCR, the number of samples was set at 100. PFlex was kept between 0.1-0.06, and
PRigid was kept between 0.05-0.0005, as shown in Figure 3. The lower the PFlex and PRigid values, the lower
the number of rejections that occurred at each standard angle, as shown in Figure 3. The distribution of
the nodes across the layers is also shown in Figure 4, where layer 9 is the native state. When PFlex = 0.06
and PRigid = 0.0005, the number of rejections are at their lowest, and the nodes are distributed across 8
layers. When PFlex = 0.1 and PRigid = 0.05 or 0.0005, the nodes are also distributed across 8 layers, but
the number of rejections is much higher.

For the second tests for TCR, the number of nodes generated was set at 100. PFlex was kept between
0.1-0.06 and PRigid was kept between 0.05-0.0005, as shown in Figure 5. The distribution of nodes across
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TCR: Node Generation = 100

Figure 5: The number of nodes generated = 100 for TCR. PFlex is varied between 0.1 - 0.006, and PRigid is varied
between 0.05 - 0.0005.

the layers is shown in Figure 6. When PFlex = 0.06 and PRigid = 0.0005, the number of rejections are the
lowest, however the distribution of nodes is not as diverse, which means the nodes are not at their highest
quality. When PFlex = 0.06 and PRigid = 0.05, the number of rejections is fairly low, and the nodes are
highly distributed.

When testing 1QLP, the number of samples and the number of nodes generated were not changed. PRigid

was kept at 0.01, and PFlex varied between 0.1-0.02, as shown in Figure 7. The distribution of nodes across
the layers is shown in Figure 8. When PFlex = 0.1, the layers have the best distribution, however the number
of rejections are quite high. When PFlex = 0.02, the number of rejections is lower than for other tested values
of PFlex, but the nodes are not generated across as many layers as when PFlex = 0.1.

3.3 Conclusion

TCR. When the number of samples is set at 100, the number of rejections tends to be higher, especially
when the values of PFlex and PRigid are low. The number of nodes generated in each layer tends to be higher,
and the nodes are distributed across more layers. However, this is to be expected, as when the number of
nodes generated is set at 100, the number of nodes in each layer should be lower. When the number of
samples is set at 100, the parameters with the smallest number of rejections and largest distribution of
nodes is when PFlex = 0.06 and PRigid = 0.0005. When the number of nodes generated is set at 100, the
parameters with the smallest number of rejections and the largest distribution of nodes is when PFlex = 0.1
and PRigid = 0.0005.

1QLP. The results of 1QLP were much more varied than the results for TCR, but since 1QLP is a
larger protein, this is not surprising. The number of rejections decrease as PFlex decreases, with the notable
exception being when PFlex = 0.08. The nodes are not distributed across as many layers as the nodes for
TCR. The parameters with the smallest number of rejections and biggest distribution of nodes is when PFlex

= 0.1.
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(a) PFlex = 0.1, PRigid = 0.05 (b) PFlex = 0.1, PRigid = 0.0005

(c) PFlex = 0.06, PRigid = 0.05 (d) PFlex = 0.06, PRigid = 0.0005

Figure 6: The protein studied is TCR. The number of nodes produced in each layer for every run is graphed. In (a),
the number of nodes generated in every layer is graphed for PFlex = 0.1 and PRigid = 0.05. In (b), the number of
nodes generated in every layer is graphed for PFlex = 0.1 and PRigid = 0.0005. In (c), the number of nodes generated
in every layer for PFlex = 0.06 and PRigid = 0.05. In (d), the number of nodes generated in every layer is graphed
for PFlex = 0.06 and PRigid = 0.0005.
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1QLP

Figure 7: The rejections are graphed against the standard angle for 1QLP. PFlex is varied between 0.1 - 0.02,
while PRigid is kept constant at 0.01.

(a) PFlex = 0.1, PRigid = 0.01 (b) PFlex = 0.08, PRigid = 0.01

(c) PFlex = 0.06, PRigid = 0.01 (d) PFlex = 0.02, PRigid = 0.01

Figure 8: The protein studied is 1QLP. The number of nodes produced in each layer for every run is graphed. In
(a), the number of nodes generated in every layer is graphed for PFlex = 0.1. In (b), the number of nodes generated
in every layer is graphed for PFlex = 0.08. In (c), the number of nodes generated in every layer is graphed for PFlex

= 0.06. In (d), the number of nodes generated in every layer is graphed for PFlex = 0.02.
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4 Application: Ligand-Receptor Binding

This section is awaiting publication by the University of New Mexico Medical School.

5 Conclusion

In this paper, we presented a way to model the movements of proteins, ligands, and receptors using PRMs.
The advantage to using PRMs is that it can allow dynamic views of molecular interactions to be simulated
with a low computational expense, which makes thousands of simulations possible. By using articulated
linkages to model proteins, ligands, and receptors, it possible to observe the conformational changes that
occur during binding. The parameter study, shown in Section 3, demonstrated that changing the PFlex and
PRigid of a protein can affect the number of rejections that are generated, as well as how far away from the
native state nodes are placed. The Receptor-Ligand binding study, shown in Section 4, demonstrated that
it is possible to use articulated linkages as accurate representations of ligands and receptors. It also showed
that, as we suspected, the more robots or nodes that are generated in each roadmap, the longer it takes to
generate the robot. Hopefully, both will be used in the future to study ligand-receptor and protein binding,
ideally to aid the development of new vaccines.
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