
Universally Accessible Graph Creation and Examination

in Real-Time with GSK

Sean P. Mealin

August 11, 2011

Abstract

Traditionally node-link diagrams, also known as graphs, have been considered problematic
for visually impaired and blind users. Our focus is to create a tool that allows a user to
create and edit graphs without being able to see a screen or use a mouse. Professor Suzanne
Balik and Sean Mealin collaborated on the creation of GSK, a software based tool that
allows users to work on graphs in both a visual and non-visual medium. When creating the
tool, we focused on designing the user interface according to universal design principles, and
real-time collaboration between sighted and non-sighted users.

In this paper, we focus on the features and methodologies behind GSK. We discuss how
GSK is different from other graph solutions, and the ideals behind the program design. We
also focus on implementing universal design principles, and the method selected for GSK to
enable real-time collaboration between users of the program.

Contents

1 Introduction 2

2 Related Work 2

3 Program Design 2
3.1 Requirements . 3
3.2 Implementation Details . 3

4 Semantic and Spatial Views 4
4.1 Connection View . 4
4.2 Grid View . 5

5 Next Steps 6
5.1 User Studies . 7
5.2 Additional Features . 7

6 Acknowledgments 7

1

1 Introduction

Graphs are prevalent in computer science and many other fields. They are used to model
social networks, plan program dataflow, and much more. There is both free and commercial
software that allows a user to easily create, edit and design graphs with the use of a mouse.
Traditionally these are very visual activities that exclude visually impaired and blind users
who are incapable of dragging icons around a screen. There have been attempts to enable
this group of users to work with graphs; however those solutions have either had special
hardware requirements, or not given full control over the graph to the user.

GSK, our software-based graph creation and editing tool gives complete control over the
graph creation and editing process to sighted and blind users alike. A simple control scheme
enables blind users to easily explore graphs, leveraging the same set of skills that are used
when exploring a new environment in the physical world. Unique views allow sighted and
blind users to precisely position nodes, enabling the creation of visually logical graphs that
can be exported to an image for sharing.

The authors of the tool, Professor Suzanne Balik and Sean Mealin focused on three
key ideas throughout the design process of GSK: universal design, computational and
informational equivalence, and real-time collaboration between sighted and blind users.
Universal design states that there should be a single presentation layer in an application
that is usable by all, no matter the actual medium, such as visual or audio. Computational
and informational equivalence refers to the idea that for each access method, the same
information should be available, without a significant difference in the overhead needed
to assimilate the data. Real-time collaboration is the ability for users to work together,
without any kind of delay caused by their particular access method. GSK is unique because
it achieves all three of these key ideas, and applies it to graphs, an inherently visual concept.

2 Related Work

An excellent overview of the history of accessible graph tools can be found in ‘‘Combinatory
Graph Creation and Navigation for Blind People” by Suzanne Balik. [1] Arguably the most
advanced tool is Deep View by Dorian Miller [2], however the user is not given control over
some aspects of the graph, such as node positioning. In order to give the graph a logical
layout, sighted users were required to move the nodes with a pointing device, an activity
that had no analog for the non-visual user.

3 Program Design

While the program has a single unified presentation layer, we separated all functionality and
elements into two abstract access methods in order to simplify user interface design. The
visual user interface access method was designed to be used with a pointing device for input,
and a visual display for output. The non-visual interface access method was designed to use
a keyboard for input, and use synthesized speech for output. All user interface elements and
functionality were required to be accessible from both access methods. For example, if a
visual object could not be represented in a non-visual way, it was replaced by another object
that could be accessed by all users.

2

3.1 Requirements

Our three key ideas, universal design, computational and informational equivalence, and
real-time collaboration are all abstract concepts that can become complicated when applied
to inherently visual subjects, such as graphs. To simplify the implementation for GSK, we
subdivided each one into a number of requirements that the program should fulfill. After
enumerating the requirements, we refined them into concrete goals that could be achieved in
program code. Listed below are the requirements that we identified for each of our key ideas:

• Universal design:

– It should be possible to activate all functionality from both a pointing device and
a keyboard.

– The interface should be able to represent all elements both visually and non-
visually.

– All commands should be simple to remember and intuitive.

– All access methods should maintain a synchronized point of focus.

• Computational and informational equivalence:

– Information should be conveyed to the user as simply as possible.

– There should be no information that is specific to a particular access method.

– Access to data should be as efficient as possible regardless of access method.

• Real-time collaboration:

– All access methods should be active at all times.

– Visual and non-visual feedback should be generated simultaneously.

3.2 Implementation Details

One of the first decisions that we made, was to program the tool in Oracle’s Java programming
language. The cross platform design of Java allows the tool to be available to as many users
as possible. The next design choice that we made was to not make the program self-voicing.
A self-voicing program handles text-to-speech without relying on another program, often
at the cost of customizability and synthesis quality. We took the approach of allowing the
user to use their preferred screen reader with the application, so that their preferred speech
settings (speech rate, speech pitch, etc) remained intact. That choice also allows commercial,
high quality synthesizers to be used with our program.

To facilitate communication with the user’s screen reader, we leveraged the Java Accessi-
bility API throughout our program. By setting attributes such as the Accessible Description,
we were able to produce the correct audible output with any screen reader that is capable of
hooking into the Java Accessibility Bridge.

When designing the core of the program, we faced several challenges. Java’s SWING API
has extensive support for controls that are found in traditional business applications, such as
edit boxes, labels, and date pickers, all of which could not be adapted for use in a graph. We

3

were forced to implement our own custom objects, which would render themselves both on
screen, and through verbal feedback. Due to the use of custom objects, it became necessary
for us to implement a custom focus-tracking solution. We took that opportunity to build in
natural command structures, such as changing focus between graph elements using the arrow
keys on the keyboard, rather than using the tab key, which is typically found in traditional
applications.

The use of custom objects that rendered themselves gave us the idea of creating domain-
specific categories of elements that could be added to the graph. For example, under a
‘‘automata” category, there could be objects such as ‘‘start state”, ‘‘state”, and ‘‘accepting
state”. Under a ‘‘circuit” category, there could be objects such as ‘‘resistor”, ‘‘capacitor”,
and ‘‘battery”. The categories could be extended into any domain that leverages the power
of graphs.

4 Semantic and Spatial Views

When communicating graphs to a user, we identified two categories of information. The
first category is ‘‘semantic information”, which consists of information such as which nodes
are connected, directedness of connections between nodes, and type of nodes that are found
in the graph. The other category that we identified is ‘‘spatial information”, which consists
of information such as node location relative to an arbitrary node, and patterns of node
positioning relative to the graph as a whole.

In order to communicate these two categories of information to the user, we separated
them into two distinct views. ‘‘Connection View” focuses on the graph semantics, and allows
the user to explore the connections between the nodes. ‘‘Grid View” allows the user to focus
on spatial information, and explore the layout of the nodes. Separating the information into
two different views also allows the user to selectively ignore information, which may help if
the user is trying to answer a specific question about the graph.

GSK is unique in the fact that spatial information is considered of equal importance as
semantic information. By allowing users to set and view the position of nodes, users are able
to both create graphs with a visually logical order, and obtain an overview that may enable
them to identify node-positioning motifs present in the graph.

4.1 Connection View

‘‘Connection View” allows the user to navigate between nodes with the keyboard. The user’s
perspective is as if they are standing on a node, and can look at the edges entering or leaving
the node with the left arrow and right arrow keys. Pressing the up-arrow key is as if the
user walks down the edge, and moves to a new node. Using this control scheme allows the
user to rely on navigational skills developed in real life to move around the graph; the same
processes that a user uses to explore a new building can be applied to exploring a new graph.

From within this view, the user can also press the enter key to set and view attributes
of a graph element, such as shape, color, or size. It is also possible to add and remove
connections between nodes in this view; the user is able to instantly view the changes that
result from editing the graph.

4

Figure 1: A simple graph in Connection View. The node highlighted in yellow is the currently
focused node.

The visual interface allows users to interact with the graph in a standard way; users can
use a pointing device to Drag-and-drop nodes, select a graph element to be focused, and
double click to access attributes of the currently focused item.

4.2 Grid View

‘‘Grid View” allows the user to explore how the nodes are positioned relative to one another.
Just as its name implies, ‘‘Grid View” consists of a grid whose cells consist of a discrete
space that can contain a node. In order to insure that the views are synchronized, each
cell is automatically mapped to a predictable location in ‘‘Connection View”. Changing the
graph in one view will always update the other view.

The user is able to move around the grid with the arrow keys; each time a new cell is
selected, feedback such as the location and whether the cell contains a node or not is relayed
back to the user. When the user presses the enter key on a cell, depending on if its empty or
filled, it will either add a new node, or allow the user to set and view the node’s attributes.

5

Figure 2: A simple graph in Grid View. The square highlighted in yellow is the currently
focused cell.

Working with the grid also enables a user to finely position nodes to create an accurate
graph.

As in ‘‘Connection View”, working with a pointing device works in a standard manner;
single clicking will select a cell, while double clicking will add or edit the node in the current
cell.

5 Next Steps

While GSK has reached version 1.0, there are several things that we have already planned.
After doing some user studies, we plan on adding some more functionality in order to make
it a more useful tool.

6

5.1 User Studies

The next thing to do is identify any changes that need to be made in order to make the
tool more useful in both an educational and professional setting. We currently plan to
have a student enroll in a graph-intensive course, to track the usefulness of the tool. By
getting the student to give feedback such as when the tool was useful, how well it enabled
communication between the student and the professor, and additional features that would
enhance the tool, we hope to be able to perfect GSK.

After making those changes, we hope to begin a large-scale user study in order to
determine the effectiveness of GSK in multiple fields. We also need to get feedback on the
interface, and determine if any changes need to be made.

5.2 Additional Features

As time progresses, we expect to keep on adding additional features to GSK. Some of the
features that we have identified are listed below:

• The ability to add and view custom attributes on nodes and edges

• The ability to print to a Braille embosser

• The ability to create a slideshow in order to see how graphs change when an algorithm
is run

• The ability to save graphs in current graph-related standard formats

• and much more. . .

6 Acknowledgments

I would like to thank Professor Suzanne Balik for the support and the opportunity to work
on this fantastic project. I would also like to thank Dr. Richard Ladner and the Access
Computing Team for funding through their generous minigrant. Lastly, I would like to
thank the DREU program for the guidance they provided to make this summer as successful
as it was.

References

[1] Suzanne Prem Balik. Combinatorial graph creation and navigation for blind people.
Technical Report 2011-1, Department of Computer Science, NC State University, Box
8206, Raleigh, NC 27695-8206, 2011. 2

[2] Dorian Miller. Can we work together? PhD thesis, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina, 2009.
Available at http://search.lib.unc.edu/search?R=UNCb5970444. 2

7

	Introduction
	Related Work
	Program Design
	Requirements
	Implementation Details

	Semantic and Spatial Views
	Connection View
	Grid View

	Next Steps
	User Studies
	Additional Features

	Acknowledgments

