
Marker-Based Localization of Robots in Simulation

Osayame Gaius-Obaseki Thaddeus I. Madison Jory Denny Aditya Mahadevan Nancy M. Amato

Abstract— Localization is one of the key components of
practical robotics. Localization is easy in an environment
whose features are known a priori, as the agent does
not have to simultaneously map the environment. One
scheme for localization in a known environment is to use
unique visual markers that denote specific coordinate
positions. This paper details our implementation of a
particular localization scheme. Our technique utilizes
a simulated vision sensor to detect a robot’s distance
away from landmarks, and its relative direction to them.
With the provision of at least two markers, we are able
to triangulate the relative position and orientation of
a robot. We test the effect of estimation error on the
accuracy of our method.

I. INTRODUCTION

Localization is one of the key components of prac-
tical robotics. Localization is easy in an environment
whose features are known a priori, as the agent does
not have to simultaneously map the environment. We
assume that there are beacons in the environment whose
positions are known and whose distances from the
pursuing robot are measured at every time step in the
simulation.

This paper details our implementation of a partic-
ular marker-based localization scheme. Our technique
utilizes a simulated vision sensor to detect a robot’s
distance away from landmarks, and its relative direction
to them. Perfect simulation is referenced as a way
to explain what our approach is and how it achieves
a given position. We also test the robustness of our
method to variations in the estimation error and results
are obtained and examined as well.

II. RELATED WORK

In this section, we review some research relevant to
the marker-based localization discussed in this paper.
We first highlight some work in motion planning, and
then review some interesting work in localization and
group behaviors.

A. Motion Planning

Motion planning is a term used in robotics for the
process of detailing a task into discrete motions. There
are countless situations in the real world that involve

moving from point A to another point B. For this
reason, computer simulations can be used to model
events in nature. Concepts that are describable by an
algorithmic process are modeled on computers so that
the environment can be controlled. These simulations
can be implemented on real robots to view events in a
semi-controlled environment.

An example of this is our prior work, [9] and [8], that
uses a roadmap-based approach to motion planning.
This paper builds on the prior work.

B. Localization

Research on mobile robot localization using land-
marks assumes that the environment the robot enters
has landmarks in them. M. Betke and L. Gurvitis [5]
introduce noisy input to their simulation to simulate
real world error. Their algorithm estimates the robot’s
position and orientation with respect to the map of the
environment. M. Betke and L. Gurvitis’s [5] algorithm
represents the landmarks by using complex numbers.
The algorithm runs in time linear in the number of
landmarks.

M. Betke and L. Gurvitis [5] also address a po-
sition estimation problem. They define the problem
of estimating a robots position and orientation in its
environment given a global map of the environment and
bearings of landmarks measured relative to each other
at the robots position. Due to distributed errors along
the distances away from the robot, the triangulation
process will not result in exact measuresments. For this
reason, in [5], triangulation with perfect data and with
noisy data are presented and compared. Using “noisy
data” can help determine how flexible the localization
algorithm is.

Sutherland and Thompson [10] present an approach
to how error varies. Their study focuses on how the
amount of error from the theoretical position to the
actual depends on the orientation of the landmarks
and how making “wise choice[s]” in the landmark
configurations can significantly decrease error.

Different approaches are presented in [7] and [6] for
handling position uncertainties associated with navigat-
ing robots. These papers differ in terms of how the



environment is structured and some present results of
hardware implementations of navigating robots.

We address localization using a software simulation
with a semi-random path and percentage based random
error to model sensing error in hardware.

C. Group Behaviors

Research on group behaviors focuses on the behavior
of agents in multi-agent systems. In other words, group
behaviors involves the behavior of agents as individuals
within a group, as well as the group as a collective
system. Group behaviors arise in many scenarios rang-
ing from search and rescue operations, to hunting, to
soccer.

Covering is one type of group behavior. Covering
involves an agent attempt to traverse an environment,
whilst performing a particular task, i.e. localization. In
[1], a new class of covering problems is introduced
where the objective is to generate an optimal route for a
snow-blower in a polygonal environment. Furthermore,
[2], [3], [4], the benefits of integrating roadmap-based
path planning techniques with flocking techniques were
explored, and a variety of group behaviors including
exploring and covering were simulated utilizing an
underlying roadmap.

III. EXISTING FRAMEWORK

In this section, we review some relevant sources
that are necessary to building to the marker-based
localization discussed in this paper. We review some
existing framework to simulation and sensors.

A. Simulation

The Parasol Laboratory has developed a framework
that allows us to easily develop real time simulations of
different types of behavior in mobile agents, including
robots. In these simulations, each agent is equipped
with behavior modules that determine how the agent
moves and reacts to its environment and other agents
in the simulation. The simulation can resolve collisions
among agents and between agents and the environ-
ment. This framework is currently being extended to
incorporate physical robots, namely iRobot Creates. In
this paper, we utilize the simulation framework for our
experiments.

Below is an outline of the algorithm which represents
the simulation loop.

At each step of the simulation, every agent updates
its sensory information. The agent’s ability to detect
other agents in the environment can be affected by
agent capabilities (the view radius and angle), the

Algorithm 1 General Simulation Loop
Input: simulatorsim, environmentenv

1: groupsall = sim.getAllGroups()
2: for g 2 groupsall do
3: g !applyBehaviorRule(env)
4: end for
5: for g 2 groupsall do
6: updateState(g)
7: end for
8: ResolveCollisions(groupsall,env)
9: Evaluation

presence of obstacles in the environment, and (in 3D
environments) the surfances and obstacles that consti-
tute the environment itself.

B. Sensors

Fig. 1. A diagram detailing intercommunication between sensors
and the agent

Figure 1 is a diagram of our sensor suite. The
sensor suite is a collection of sensors used to gather
information from the environment. This diagram does
not refer to any specific sensor, but a generic rep-
resentation of how sensors are implemented. These
sensors can gather values from simulation, hardware,
etc. The given sensor, denoted as a “smart sensor”,
should be able to work coherently with other sensors.
Lastly, these sensors should model mearsurement error
in simulation.

C. Specific Sensors

The vision sensor from the Parasol Lab is a basic
implementation of a sensor that checks for agents



within a view radius that are not blocked by any other
obstacle.

We have developed a more generic sensor that not
only checks for agents, but also checks for markers,
other nodes, or whatever the robot is trying to see in
the environment.

IV. OUR APPROACH

In this section, we describe the algorithm used to
solve localization problems given a small amount of
knowledge about the environment.

A. Localization

Our approach, called “marker-based localization”
uses a process called triangulation [5]. Given two
markers, we assume that the vector that connects the
two markers and positions of the markers in relation
to the environment are known a priori. The robot uses
these two markers to form a triangle (using itself as
the third point on the triangle). The way triangulation
works is:� The distances from the markers to the robot and

the facing direction of the robot are calculated.� The angle that lies at the tail of the vector that con-
nects any two given markers formed is calculated
using the law of cosines.� This vector is rotated by this angle to point in the
direction of the robot.� The head of this vector is the position of the robot.

This is the way the basic triangulation works. It
is computationally simple in that it only requires the
rotation of one vector.

B. Obtaining an unique solution

Approaching triangulation from a geometric stand-
point creates an interesting problem.

In Figure 2, it has been noted that there are two
potential places that the robot can lie. To help prove
this, notice how the distancesd1 and d2 here act as
radii to their respective circles. At any given time step
in our simulation, where a time step is the process
of the robot moving from one position to another, the
distance from the node to the robot can be interpreted
as a radius for that particular marker. If this is the case,
then it is a safe assumption to say that robot can lie on
the circumference of circle one. Now after this same
process is applied to the other marker, there exists two
circles, whose intersections are the solution to where
the robot lies. When the circles touch, there is only
one solution. When the circles overlap, as depicted

Fig. 2. An example of localization with no error

in Figure 2, there are two solutions to the system of
equations.

The triangulation results in two positions. The robot
needs to differentiate between the two positions. This is
the position-error problem. We will have to implement
a way for the robot to determine if the robot lies on
the rightside or the leftside of any of our markers. After
this is satisfied, then it is possible to always calculate
the correct triangulation.

Figure 3 depicts the right versus left decision pro-
cess. This process works by using the vector of the
robot’s facing direction and calculating the value of the
angles that exist between the facing direction and the
vector constructed from the robot to any one marker.
The two angles that are calculated are solved for in a
range from -90 to 90 degrees. This is the determining
factor in our implementation. If the angle’s value is
positive, this the marker is on the right. If the angle’s
value is negative, then the marker is on the left.

C. Accounting for measurement error

Measurement error is the error that was imposed on
the distances from the markers to the robot. This creates
two cases: an underestimate case and an overestimate
case. The underestimate case occurs when the error
imposed is a negative value. When this error grows
large, the markers’ circles could possibly not intersect,
creating a no solution result. To address this problem,



Fig. 3. The Right Versus Left Decision Process

the robot incrementally increases the distance estimates
until it finds an intersection.

The overestimate case creates intersections, but the
theoretical triangulated position becomes further away
as the error imposed is increased. We addressed this
situation by using many pairs of markers in the robot’s
view radius to triangulate and the results of the indi-
vidual triangulations are averaged.

V. EXPERIMENTS

A. Experimental Assumptions

Before we describe our setup, we will present some
assumptions made during our experiement.

One of the most important assumptions about our
environment is that the objects in our environment are
static. We assume that the markers do not move as the
simulation progresses. Our implementation is a simple
answer to a localization problem. we are assuming
that when implemented on real hardware the markers
will be replaced with unique landmarks which do not
typically move.

Another assumption is that there is more than one
marker in sight at a time. If this assumption is not
satisfied, the robot cannot localize using our scheme.
We give the robot a probabilistic roadmap to traverse
in the cases that it cannot localize itself. Essentially,
this roadmap gives the robot a default random path to
travel along. If, at any given timestep, the robot sees
more than two markers, then it localizes.

Since the view radius of the robot is 360 degrees
it is assumed that error imposed on markers in front
of the robot will be decreased by markers behind the
robot and averaging the results. If at least three markers
are in the robot’s view radius, as the error increases
it reaches a certain limit where the amount of error
is always counteracted by averaging multiple pairs of
marker triangulations.

B. Experimental Setup

Fig. 4. The environment with an obstacle in the middle and green
dots as markers

Figure 4 is a picture from one of our experiments. It
is important to note that we assume a static environment
for our experiment. This means that nothing in the
environment moves at any given moment in time other
than the robot that is localizing.

The large open box represents our “bounding box”.
This box represents the space available for the robot to
traverse. It is important here to note that our algorithm
is not space specific, but the bounding box allows for
the user running this experiment to arrange the size to
a comfortable viewing size. The size of the bounding
box is 48 units wide and 48 units long.

The view radius for the robot is denoted by the large
transparent circle. The markers that the robot detects
are the small cylinders in the environment.

The lines interconnecting the markers denote where
the robot can move in the space allowed, so without a
domain generating these lines take a long time. Since
generating this map is outside of the scope of this paper,



we will not discuss map generation but mention that a
set domain size makes this process quick.

The block in the center is an obstacle. This obstacle
presents a few issues that call for close attention. One
is that if two markers are seen but an object is blocking
the interconnections between the markers then how can
the robot still localize? The answer is that the robot
can still localize because our schemes uses the sight
distances or the distances from the robot to the markers.
The connection between any two markers is used for
calculation purposes but is optimized to only use the
computational distance for that connection. Also, what
happens if the marker is in the robot’s view radius but
is blocked by an obstacle. All markers that have an
obstacle in the way are not seen and therefore are not
used to localize the robot.

We tested our implementation with varying error for
300 timesteps. At every timestep, the robot localizes
itself using multiple pairs of points in its view radius.
After, the localizations that were calculated in that time
step are summed and averaged. We then record the de-
viation between the theoretical position and the actual
position from every time step and average these values.
These final results are plotted against the maximum
value of error that can be imposed on the distances
from the markers to the robot.

VI. RESULTS

A. Zero Error Case

When the system undergoes no error, then no matter
how long the simulation runs the theoretical position
of the robot matches that of the acutal position of the
robot. The zero case helps prove that our implementa-
tion is correct.

B. Cases With Varying Error

In Figure VI:
Measurement Error= Percent of actual distance from

marker to robot imposed as error
Localization Error=distance between estimated and

actual robot position
The estimated error increases with measurement er-

ror. This result is intuitive, but more interesting is what
happens as the percentage-based measurement error
increases to a high percentage of error. With small
error, the amount of nodes does not seem to affect the
localization error. With high measurement error, it is
clear that localizing with more nodes results in lower
localization error.

Fig. 5. A graph comparing estimated error versus measurement
error

VII. CONCLUSION

The simulation was implemented successfully and
can be adjusted to encompass error for testing. The
results show that there is a trend that exists in our im-
plementation. This example is a simple implementation
that produces results that can applied to a wide variety
of alterations to this experiment. It can be concluded
that with enough visible markers, high error does not
effect the robots ability to localize by some radical
degree.

VIII. FUTURE WORK

The concepts presented in this paper will be im-
plemented on real robots with real sensors where the
effects of machine error will be observed. Our imple-
mentation will need to test scarce areas where there
are not that many markers/ square units and excessively
cluttered areas. If the trend still exists at this point, then
our algorithm will be quantified.

REFERENCES

[1] E. M. Arkin, M. A. Bender, J. S. B. Mitchell, and V. Pol-
ishchuk. The snowblower problem. InProc. Int. Workshop
on Algorithmic Foundations of Robotics (WAFR), 2006.

[2] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Better flocking
behaviors using rule-based roadmaps. InProc. Int. Workshop
on Algorithmic Foundations of Robotics (WAFR), pages 95–
111, Dec 2002.

[3] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Better group
behaviors in complex environments using global roadmaps. In
Artif. Life, pages 362–370, Dec 2002.

[4] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Roadmap-based
flocking for complex environments. InProc. Pacific Graphics,
pages 104–113, Oct 2002.



[5] M. Betke and L. Gurvits. Mobile robot localization using
landmarks. InProc. IEEE Int. Conf. Intel. Rob. Syst. (IROS),
pages 135–142, 1994.

[6] T. S. Levitt, D. T. Lawton, D. M. Chelberg, and P. C.
Nelson. Qualitative navigation.DARPA Image Understanding
Workshop, 2:319–26, 1988.

[7] M. J. Mataric. A distributed model for robot environ-
mentlearning and navigation. Technical Report 1228, M.I.T.,
Cambridge, MA, 1990.

[8] S. Rodriguez, J. Denny, J. Burgos, A. Mahadevan, K. Man-
avi, L. Murray, A. Kodochygov, T. Zourntos, and N. M.
Amato. Toward realistic pursuit-evasion using a roadmap-
based approach.Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
1:173845, May 2011.

[9] S. Rodriguez, J. Denny, A. Mahadevan, J. C.-T. Vu, J. Burgos,
T. Zourntos, and N. M. Amato. Roadmap-based pursuiteva-
sion in 3d structures. May 2011.

[10] K. T. Sutherland and W. B. Thompson. Inexact navigation.
IEEE Int. Conf. Robot Automat.,, pages 1–7, 1993.


