
Adapting Pik Tracker Software for Articulated Tracking
Amber Shinsel, shinsela@eecs.oregonstate.edu

1. Introduction

An area of intense research in computer vision is the
analysis of human action. To date this analysis has
relied almost entirely upon data collected of a
human subject wearing expensive sensors at a
sparse set of points. Due to these limitations, human
action recognition using this data is extremely
suspect. Recently, an inexpensive 3D camera with
high fidelity has been developed, and has allowed
a skeletonization of a human being (called
articulated tracking) to be extracted in realtime
using this sensor. Software was recently developed
by Soren Hauberg to achieve more accurate
articulated tracking. This software is known as the
Pik Tracker [1], and has the potential to be very
valuable in advancing articulated tracking. The Pik
Tracker software will allow us to compare the
performance of articulated tracking in estimating
human pose to the performance of the invasive,
expensive wearable sensors such as motion capture
suits. This analysis could provide a strong incentive
for all human action recognition research in
computer vision to rely on the data collected by our
method. However, the Pik Tracker software was not
in a usable state for the TeleImmersion lab. My task
was to collect the various library and program
dependancies, alter the program to compile on a
Windows-based system, create and run the
executables, and verify that the Jacobian [3] was
being correctly calculated.

This paper will be structured in the following way.
In section 2, basic background information on
articulated tracking will be given. Next, OpenTissue
—a program that is greatly depended on by the Pik
Traker— will be discussed. In section 4, the main
stages of the project will be outlined. Finally,

section 5 will discuss the future work that will be
done with the Pik Tracker code.

2. Background

Articulated tracking is used in computer vision to
try to estimate the position of a body or object
over time given certain sensor input. Articulated
tracking is just one of many solutions to human
motion tracking, but it seems to be one of the
most promising ones as well. Motion capture is an
example of another of these solutions, but it is
invasive, expensive, and unsuitable for most data
capturing outside of a laboratory.

Articulated tracking is highly related to particle
filtering. Particle filters, otherwise known as
Sequential Monte Carlo methods, are model
estimation methods based on simulation and
probability. SMC methods work to output
samples that approximate the filtering distribution
[5] . The basic steps of particle filtering include
sampling, resampling, computing importance
weights, prediction, and normalization are all
present in the Pik Tracker code. Essentially, these
steps simply ensure that the samples used
represent a probability distribution. For more
detailed information on particle filtering and
Sequential Monte Carlo Methods, see [5].

A very important part of the articulated tracking
process is the computation of the Jacobian [txt].
The Jacobian plays a vital role in the accuracy of
the articulated tracking, and is very depended on
when dealing with the covariance of calculated
'bone' positions [1]. The 'bones' are defined and
determined in a skeleton file that is used by the
Pik Tracker. The skeleton file is essentially a

spatial representation of the person or object that is
the subject of the articulated tracking.

3. OpenTissue

There were many program dependancies for the Pik
Tracker, but the most important one was
OpenTissue. OpenTissue is a program that consists
of a set of many data structures, algorithms, and
functions that assist in modeling and simulation.
The Pik Tracker used many OpenTissue functions;
the one I focused most on being the Jacobian
calculations.
OpenTissue requires a set of its own dependancies.
They consist of:

• Boost and the Boost Bindings
• Nvidia Cg
• Qhull, TetGen, TinyXML, and Triangle
• ATLAS
• DeVIL
• GLEW
• GLUT

These dependancies are very important, and
installing them incorrectly can lead to many
problems. However, even if you install them
correctly OpenTissue will occasionally run into
problems with their libraries or include files. This
happened to me, and I was able to rectify the
problem by manually including the necessary files
in Visual Studio's configuration options.
Once all the dependancies are installed, an
OpenTissue Visual Studio Project can be created
using CMake. OpenTissue must be compiled in
Visual Studio (this is when you find out if your
dependancies are correctly installed), and then
OpenTissue is ready to use with the Pik Tracker.

4. Project Stages

4.1 Background Reading and Code Exploration

One of the most difficult parts of working on the
Pik Tracker software is the background knowledge
needed to fully understand articulated tracking. The
first couple weeks of the project was spent doing
extensive background research and reading, as well
as examining the Pik Tracker source code. In order

to grasp articulated tracking, it is important to
have a strong understanding of linear algebra,
forward kinematics, Sequential Monte Carlo
algorithms, and robotics – to name a few.
Articulated Tracking literature is heavily based in
theory and mathematics, so it is a difficult read
that can be qui te chal lenging to one
inexperienced in these areas.

The Pik Tracker code itself is quite confusing at
first (as to be expected). Even though almost a
full week was spent examining it, it was difficult
to get a feel for what was happening without
being able to actually step through the code with
Visual Studio.

4.2 Installing Dependancies

One of the most difficult parts in getting the Pik
Tracker to a functional place on a Windows
machine is making sure all of the dependancies
are collected and installed properly. It was known
that OpenTissue was required to run the Pik
Tracker, but other dependancies were learned
through trial and error. It turns out the main
dependancies that the Pik Tracker has are
OpenCV libraries, OpenTissue and all of it's
dependancies, and a few other library or include
files that may or may not be included in a given
operating system.

4.3 Running Executables

After OpenTissue and all of the other necessary
dependancies were installed a Visual Studio
project of the Pik Tracker was created using
CMake. Other problems then started to surface.
The Pik Tracker code was written in C++ on a
Linux system, and therefore there were several
consistency problems when it was used with
Visual Studio's compiler. Many of these issues
had to be tracked down and dealt with manually,
but some of them simply required a change in the
CMakeList.

After these issues were finally all resolved and a
successful build had been done, it was time to
examine the executables created by the Pik
Tracker. The Pik Tracker created seven

executables:

• gui_projector: This program is perhaps the most
important one, as it is the one that does the actual
tracking. The results of the tracking are shown in a
gui that projects the estimated poses onto the
original video frame by frame. Therefore, when you
run this executable you see the Pik Tracker's
estimations overlaying the actual video as the video
plays.

• gui_tracker: This program is virtually the same
as the gui_projector, except that the results are
shown differently—the data from the stereo camera
is used instead. The visualization is the only
difference between these two programs.

• headless_tracker: This program only does the
tracking – there is no visualization or gui.
Therefore, headless_tracker is primarily used only
in the case of using a machine over a network or a
similar situation.

• playground: This program is one of the least
important—it simply serves as a 'playground' for
experiments.

• poser: This program is used to set the initial
'pose' of a person for the tracker when looking at
the data.

• skelton_sizer: This program is used to modify
the skeleton that is shown over the data. It allows
you to change the size of the individual bones and
is used when creating person-specific skeleton
models.

• view_data: This program simply displays the
data.

Unfortunately, there were more problems with the
code once the executables were run. There were
several exceptions that weren't noticeable until the
data was being viewed. This required more in depth
debugging until most of the errors were taken care
of. However, gui_projector had some .dll problems
that were unresolvable without considerable .dll
manipulation. Since gui_projector is almost the
exact same as gui_tracker, it wasn't worth the hassle
to fix the .dll problem when gui_tracker would

work just as well.

4.4 Exploring Jacobian Computation

Once the executables were working, the next step
was looking at the predictions the Pik Tracker
was making (using gui_tracker) to see how well
the articulated tracking was working. It seemed
that there was a problem somewhere, as the
articulated tracking wasn't making very accurate
predictions. The first logical place to check was
the Jacobian calculation; if the Jacobian wasn't
being calculated as expected the problems would
be explained.

In order to check this, the Jacobian first had to be
manually calculated with a sample set of data—
specifically, an example from a textbook. This is
where the reading done at the beginning of the
project became important; calculating the
Jacobian is not easy without a certain amount of
relevant mathematical experience.

After calculating the expected value of the
Jacobian, it was necessary to modify the Pik
Tracker code to calculate the Jacobian simply on
that small example. This required a new skeleton
file to be written specifying the values used in the
textbook example. As the Pik Tracker was
designed to deal with large numbers of bones in a
skeleton, the simple three bone textbook example
meant that a great deal of the Pik Tracker code
had to be modified. Once the code had been
sufficiently modified, additional code had to be
written to output the Jacobian values in an
organized manner.

Right away it became obvious that the Jacobian
values being calculated by OpenTissue were not
as expected. The size of the matrices were
incorrect, and after close examination of the code
it was found that it would be impossible for
OpenTissue to output a matrix of the correct size.

Unfortunately, the duration of the project had
ended before this finding was able to be explored
fully, but there are three possible explanations for
this behavior:

1) The textbook example was incorrect. This is
very unlikely, as researching the matter found no

errors listed in this portion of the textbook.

2) The way OpenTissue is computing the Jacobian
is incorrect—at least according to what the Pik
Tracker is expecting. This could possible mean that
t h e P i k T r a c k e r i s u s i n g t h e w r o n g
compute_jacobian function, that OpenTissue has an
error in the compute_jacobian function, or that
OpenTissue does not compute the Jacobian in the
manner that the author of Pik Tracker assumed it
did.

3) The textbook example was interpreted
incorrectly in the creation of the new skeleton file.

5. Future Plans

The issue with OpenTissue's calculation of the
Jacobian will continue to be explored in further
research at a later date. Once this is resolved by the
scholars now working on the Pik Tracker, the Pik
Tracker software will be able to be used to compare
data gathered from sensor methods (such as motion
capture suits) to data generated with articulated
tracking—a much less expensive, less invasive, and
less costly method.

6. References

1. Hauberg, S., Sommer, S., Pedersen, K.S.: Gaussian-
like spatial priors for Articulated Tracking, European
Conference on Computer Vision, 2010.

2. Ek, H., Torr, P.H., Lawrence, N.D.: Gaussian
process latent variable models for human pose
estimation. In Machine Learning for Multimodal Inter-
action, 2007.

3. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical
Introduction To Robotic Manipulation. CRC Press,
1994.

4. Poppe, R.: Vision-based human motion analysis: An
overview. Computer Vision and Image Understanding,
2007.

5. Cappé, O., Godsill, S.J., Moulines, E.: An overview
of existing methods and recent advances in sequential
Monte Carlo. Proceedings of the IEEE, 2007.

6. Balan, A.O., Sigal, L., Black, M.J.: A
quantitative evaluation of video-based 3d person
tracking. Visual Surveillance and Performance

Evaluation of Tracking and Surveillance, 2005.

7. Sidenbladh, H., de la Torre, F., Black, M.J.: A
framework for modeling the appearance of 3D
articulated figures. Int. Conf. on Automatic Face
and Gesture Recognition, 2000.

