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Abstract

The problem of statistical disclosure control is to release important statistics from a large
dataset which are useful of organizations and researches while ensuring to protect the privacy of
individuals representing the dataset. Several fields have dedicated work and research to address
issue of data privacy when releasing statistical information. This paper is a brief survey about
certain weak privacy preserving principles like k-anonymity and l-diversity and differential pri-
vacy mechanism. We also discuss the problem of releasing differentially private histogram based
on interactive differential privacy interface along with a cell-based partitioning algorithm and a
kd-tree based algorithm to generate multidimensional partitions followed by the experimental
results for the kd-tree based algorithm. Furthermore, we introduce and discuss a Health Infor-
mation DE-identification framework (HIDE), to de-identify/anonymize heterogeneous medical
data.

1 Introduction

With the advancement in information technology it has become feasible to store and collect enor-
mous datasets. These datasets can be in the form of medical records, financial records, geographical
data or census data. Data providers release such datasets to data miners and researchers who see
great potential in such datasets as many useful statistics and information can be obtained from
them. However since most of the data contain explicit information called personal identifiable in-
formation about an individual, the release of such dataset poses an attack on privacy of individuals.
The simple solution would be to not release such information by removing or replacing personal
information from the dataset. But this leaves the dataset less useful for research or to generate
statistics. This is where data privacy community comes into picture. The prime work in the field
of data privacy is to release useful datasets while preserving privacy of individuals. The research in
this area is devoted to develop techniques and algorithms that guarantee privacy of a dataset. We
will discuss a few principles and privacy mechanisms defined and developed to address the issue of
privacy in released datasets [1, 4, 8].

2 Weak Privacy Preserving Principles

The primary goal of a data provider(curator) is to collect information from a large population(samples)
and release statistical information about the population. However, the curator must release accurate
statistics with a guarantee to protect the privacy of individuals. This is the called the problem of
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statistical disclosure control [2, 1].Several fields of such as statistics, theoritical computer science,
security, databases and cryptography have dedicated work and research to address this problem
because of the valuable information provided by statistical databases. The information from sta-
tistical databases can be used to identify information such as common features within a group of
people which is not obtained by analyzing individual data. Thus it is important for a data provider
to guarantee the privacy of individuals who are a part of statistical databases. Data providers
usually address the issue of privacy when releasing a dataset by removing all personal identifiable
information such as name, address, age, etc. Since personal identifiable information is removed the
resulting dataset is believed to be anonymous and is released by the data providers. However, simple
removal of personal identifiable information is not enough for guaranteeing privacy of individuals.
It has been shown that it is possible to re-identify an individual by linking information from two
entirely different datasets [8]. A common solution to the problem could seem to have multiple level
access databases but the problem remains when different organizations release datasets based on
different privacy criteria. Also the area of computer security ensures that an authorized person
receives the intended information but it does not protect against the attack of re-identifying using
external/background information once the statistical data is released. In the following section we
discuss k-anonymity and l-diversity principles to address the issue of privacy in released datasets.

2.1 k-anonymity

The problem of re-identifying by linking occurs when a set of attributes a common to both dataset
A and B or a dataset A and some external information are used to successfully match an individual.
The set of attributes a is not considered personal identifiable information in individual dataset but
when combined with other information from both datasets or some other background information
they successfully identify an individual.

Definition 1. Let the dataset A be a table with finite number of tuples. Let a be the set of attributes
of A. A quasi identifier q is defined as a set of attributes, where q ⊂ a, which when combined with
external information is able to identify a tuple in A.

Personal information such as name, address, zip code, birth date from a voters list are considered
quasi identifiers. A data adversary is able to identify a tuple when he correctly identifies the value of
the quasi identifier set that define the tuple. But if the same value of quasi identifier set also define
few other tuples than it becomes difficult for the adversary to pinpoint on exactly one particular
tuple using the given quasi identifier set. This is the basis for the k-anonymity principle.

Definition 2. A table A is considered k-anonymous if and only if for a given set of quasi identifiers
q, A[q] defines a tuple than there must be at least k − 1 other tuples defined by A[q].

k-anonymity can be achieved by using domain generalization on domains of attributes in the
quasi identifier set. Thus for a table to be k-anonymous it is important to correctly identify the
quasi identifier set. Even when careful consideration is given while identifying the correct quasi
identifier, there are some possible attacks on k-anonymity principle that compromise privacy. Below
are some of the possible attacks with measures to avoid them:

• If the order of tuples in both k anonymous releases of a table is exactly same, then it is
possible for an adversary to use both releases to identify personal information. This can be
prevented if the tuples are randomly ordered following each release.
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• Adversary can use a previous release of the table along with other external information to
re-identify a tuple from current release. This can be prevented if the attributes from previous
release are considered to be quasi identifiers for future releases.

• A k-anonymized version b1 of a table is released and after the release some more tuples are
added to the table. Hence a new k-anonymized version b2 of the table is released due to
the addition of new tuples. However, an adversary can compare releases b1 and b2 and thus
obtain information about the tuples that were added later on. To prevent this attributes from
previous release must be considered when identifying quasi identifiers for future releases.

Note: Section on k-anonymity has been adapted from [8].

2.2 l-diversity

In the previous section we mentioned some attacks against k-anonymity and ways to prevent them.
k-anonymity is accepted as a possible judging criteria to guarantee privacy as it is simple and
easily achievable .However, even when careful measures are taken to identify the correct set of quasi
identifier and also avoid the attacks discussed in section 2.1, k-anonymity does not guarantee privacy
in all situation. In their work [6], Machanavajjhala et al. showed attacks based on background
knowledge and homogeneity against k-anonymity. It was observed that in the homogeneity attack,
due to lack of diversity in the domain of sensitive information attribute, a k-anonymous table
creates groups of tuples that leak information. Also, k-anonymity provides no protection against
attacks based on background information because a data provider has no control on how much does
an adversary knows about an individual. Thus, a privacy principle must ensure enough diversity
among the domain of sensitive information attribute and should not take into consideration the
background information available to the adversary while providing privacy.

Definition 3. A attribute is considered sensitive if its value is considered personal information of
an individual and should be kept private. Medical condition is considered to be a sensitive attribute
in a medical records database. Attributes that are not sensitive are called non-sensitive attributes.
A set of non-sensitive attributes q make up the quasi identifier as they can be linked with external
information to identify an individual.

As we have seen that a table A is k-anonymous if and only if for possible value A[q] for the given
quasi identifier set q there are at least k tuples satisfying A[q]. Thus, a k-anonymous table creates
groups of tuples, where each tuple in a group has the same value for their non sensitive attributes.
Since, the grouping is not based on sensitive attribute, there exists some groups where the tuples
have the same value for the sensitive attribute besides the non-sensitive attributes. Such groups
lacking diversity within sensitive attributes are prone to privacy attacks as it becomes easier for an
adversary to learn information about a group of individual sharing a common sensitive attribute
value. e.g. adversary can learn that k people living in a specific area have a specific medical
condition like cancer. To resolve the issue it is important to have at least more than one different
value for the sensitive attribute within a group. This is the basis for l-diversity.

Definition 4. A group b is considered l-diverse if and only if it contains at least l different values
for the sensitive attribute. A table is l-diverse if every group within the table is l-diverse.

Thus, a l-diverse table resolves the issue of homogeneity attack as the values for the sensitive
attribute are diversified. Also, data provider does not need to assume what amount of knowledge
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does an adversary posses. The parameter l is proportional to the amount of background information.
Larger value of l means more background information is needed to successfully indentify a tuple in
the released table.

Note: Section on l-diversity has been adapted from [6].

3 Differential Privacy

k-anonymity and l-diversity ensure privacy of a database by modifying and generalizing domains
of some key attributes of the database. Moreover to use these principles it is important for a data
provider to identify every possible quasi identifier to ensure privacy. However, in reality it is not
feasible to find all quasi identifiers and the data provider can never know all the possible attacks
that would be carried out by an adversary on the database. Also, there is no bound on how much
external information an adversary possess. Thus, principles like k-anonymity and l-diversity can
be used to judge if a released database is private but they do not guarantee against attacks on
privacy due to background information. We will discuss a new notion of providing data privacy
called differential privacy.

3.1 Background

In the problem of statistical disclosure control a data provider must release accurate statistics
from a dataset while preserving the privacy of individual that represent the dataset. Below are
some of suggestions to address the issue of privacy in statistical databases besides the two privacy
principles discussed in section 2 are [1]:

• Providing privacy by rejecting queries that target specific individual or a group. This is not
enough to guarantee privacy as the adversary can ask several similar queries and use the
results to get specific information about individuals.

• Another approach is query auditing where each query is audited by the database and a history
is maintained. If a query is deemed to be to much revealing it is denied. The problem with
this approach is that a denial of query is enough to give out information about individuals
within the database.

• A sub sample is a subset of a larger database which can be used as a representative of the
larger set. This sub-sample can then be released but privacy for individuals who are part of
the sub-sample is neglected.

• Another approach is input perturbation, in which data or queries are modified before a
response is generated. Every time a same query is repeated the database gives the same
output.

• In randomized response, the data is randomized permanently and statistics are calculated
from the randomized response. The approach becomes more tedious for complex data.

• Adding random noise to the released data is another possibility to ensure privacy.

While one of the above approach can be used to provide privacy of information of individuals
representing the database, sometimes the approach releases information about individuals who are
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not a part of database. Thus an individual’s privacy can be compromised even if he is not a part of
any database. This leads us to discuss work by Cynthia Dwork on a new privacy mechanism termed
differential privacy. The basic idea behind differential privacy is that the output of any query
must not be affected by removal or addition of one single record from the database, i.e. joining or
leaving a database should not affect privacy of an individual and thus encouraging participation in
databases which results in increase of valuable statistical releases of data [2, 1].

3.2 Defining Differential Privacy

Consider two databases D1 and D2, where the only difference between them is a single record i.e one
is a subset of other and larger database contains just one extra record. Let K be the randomized
algorithm applied by the data provider when releasing information. Then differential privacy is
defined as:

Definition 5. [2] A randomized function K gives ε-differential privacy if for all data sets D1 and
D2 differing by at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] (1)

The probability is taken over the coin tosses of K.

A function K that satisfies the above definition guarantees that even if the information of an
individual is removed from the database it does not affect the probability of an output to occur.
The parameter ε is public and can assume values like 0.01, 0.1 or ln 2 or ln 3. The privacy of a
dataset if based on ε. Thus differential privacy is a strong notion for guaranteeing privacy and it is
independent of any background information.

3.3 Achieving Differential Privacy

The idea of differential private mechanism is to generate the same output regardless if a particular
record is present or not present in the database. This can be achieved by adding Laplace random
noise. Let m be the true answer and r be the possible response to a query. Then the random noise
added to the query must be of magnitude r−m. Similarly if the true answer is m−1 and response
is r, the noise magnitude is r−m+1. Thus, for response r to be differentially private it is sufficient
for

exp(−ε) ≤ Pr[noise = r −m]

Pr[noise = r −m+ 1]
≤ exp(ε) (2)

For two arbitrary databases D1 and D2 differing in at most one record, sensitivity, ∆Q of query
Q is defined as the maximum difference between the query results of D1 and D2.

∆Q = max[Q(D1)−Q(D2)] (3)

Thus to achieve ε-differential privacy for a given query Q on dataset D it is sufficient to return
the response as Q(D) + noise instead of returning the true answer Q(D) where noise is derived
from Lap(∆Q/ε). Noise is dependent on ∆Q and ε. Increasing Lap(∆Q/ε) flattens the noise curve
resulting into more privacy. Noise must grow with the number of queries posed to a database.

Note: Section 4, 4.1 and 4.2 have been adapted from [2, 1].
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3.4 Interactive and Non-Interactive Release of a Database

There are two settings to release statistics from a statistical database using differential privacy
mechanism and a fixed privacy budget. In a interactive setting like Privacy INtegrated Queries
platform (PINQ) [7], the data provider uses a differential privacy mechanism that adds random
noise to each query posed based on the privacy budget. As the number of queries increases each
query gets a lower privacy budget which results in increase in the amount of noise added with each
response. Once the privacy budget has been exhausted the interface comes to a complete shutdown.
In a non − interactive setting the data provider releases a ‘sanitized’ version of output based on
the privacy budget and query sequence. Once a ‘sanitized’ database is generated the original data
is never used again. Thus, a data provider needs to design an algorithm that will minimize the
random noise added to the true response for a particular query sequence [2, 1, 9].

3.5 Algorithms

There are several algorithms based on differential privacy for problems like Histogram Queries,
k −Means Clustering and Statistical Data Inference [2, 1]. In this section we will discuss
two algorithms for the problem of differentially private histogram release based on an interactive
differential privacy interface [9].

3.5.1 Introduction and Background

A histogram is created by partitioning the database into number of partitions with a certain
number of points in each partition. A interactive mechanism provides an algorithm that uses a
certain partitioning strategy to create a differentially private histogram using specific queries to
query the database. Once the histogram is generated it can be treated and released as a ‘sanitized’
version of the original data for queries like count and sum. For a sequence of differentially private
computations, the composability of differential privacy ensures privacy guarantee for that sequence.
For a series of analysis the privacy parameter values add up. Thus, more information exposed
implies less privacy. If the analysis operate on disjoint subsets of the data, the final privacy
guarantee depends only on the worst case and not the sum.

Definition 6. Consider a set Mi of queries, each providing εi-differential privacy. If Mi is sequen-
tial, i.e. the queries are related then the sequence Mi provides (

∑
i εi)-differential privacy. This is

called sequential composition of differential privacy.

Definition 7. If each Mi provide ε-differential privacy for Di, where Di is a subset of database, then
the sequence Mi provides ε-differential privacy. This is called parallel composition of differential
privacy. Thus in worst case privacy guarantees by a sequence of queries is additive reductions of
the overall privacy budget.

The parameter ε determines the level of differential privacy and its choice is public. Since, the
entire privacy budget is based on ε it is important to choose the right value for it. A sufficient
bound for ε has been proposed by Xioa, Xiong and Yuan [9], based on the analysis of prior and
posterior probability of a response.

Corollary 1. Let P0 be the prior probability of a response and Pl be the posterior probability of
a response after l queries. Then, ε < ln(x)/l is sufficient bound for guaranteeing Pl/P0 < x and
ε < −ln(P0)/l is a sufficient bound for guaranteeing Pl < 1.
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Definition 8. A “data cube” is a representation of database with N dimensions, in N -dimensional
cube. All the records in the database are points in the data cube. A “partition” is any sub-cube in
the data cube and a “cell” is the smallest partition that cannot be divided any further.

Definition 9. A database mechanishm A is (ε, δ)-useful for queries in class C if with probability
1− δ, for every Q ∈ C, and every database D, A(D) = D̂, |Q(D̂)−Q(D)| ≤ ε.

Aggregate queries functions can be of two forms. A distributive aggregate query function can
be computed by partitioning the dataset into small subsets, computing the aggregate function on
each subset and finally combining the results from each subsets to get the result for the entire
dataset. e.g. sum, count queries. A linear distributive query function can be computed as linear
function of the results from each subset. e.g avg can be computed by first computing sum and
count.

Definition 10. Absolute count query AC and relative count RC in a multi-dimensional database
D are defined as:

ACP (x)(D) =
∑
x∈D

P (x) RCP (x)(D) =

∑
x∈D P (x)

n
(4)

where P(x) returns 1 or 0 depending on the predicate.

3.5.2 Multidimensional Partioning Approach

For differentially private histogram release, the data points are partitioned into disjoint subsets
based on a set of attributes to create a multi dimensional histogram. The frequencies of each
partition is released and the histogram can be used to answer random count queries. A Laplace
noise or perturbation error is added to each partition by the differential privacy interface. When a
query is posed to the histogram, perturbation error is added if the query covers multiple partitions.
The result is estimated if a query falls within a partition. It is assumed that all partitions have
uniform frequencies thus introducing approximation error. Thus the total error added to the
query response is perturbation error plus approximation error. However, if the assumption of
uniform partition is realized practically, approximation error can be eliminated. If we perform
careful uniform partitions to generate the histogram we can minimize the perturbation error and
also approximation error.

Cell-based Algorithm A dataset can be partitioned into cells based on the domain of all at-
tributes and then release the count for each cell. Since each cell is disjoint subset of the original
dataset, according to definition 5, the algorithm provides ε-differential privacy.

kd-tree based Algorithm A kd-tree is a data structure for organizing data points in k-dimensional
space. The construction of kd-tree usually start from the root node that covers the entire space.
At each subsequent step, the space is divided into two subspaces based on a splitting criteria and
value. The algorithm continues splitting until a desired height or number of data points in each
space is achieved. The resulting structure is a balanced kd-tree. In the following kd-tree based
algorithm the main goal is to generate uniform partitions so that approximation error is minimized.
To achieve this a variance like metric H is used with a specified threshold xi1 as a check condition
for continuing partitioning of the dataset until a desired sized partition is achieved.

Definition 11. Let D0 be a sub-cube with β cells, then the average count AC0 is given as, AC0 =
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∑
ci∈D0

count(ci)/β where ci is each cell in D0. The variance like metric H is defined as:

H(D0) =
∑
ci∈D0

|count(ci)−AC0| (5)

If H > ξ1. where ξ1 is a threshold for H, then stop partitioning.

The kd-tree algorithm is a two step process each using ε differential privacy budget. Thekd-
tree algorithm first generates a ’sanitized’ database from the cell-based algorithm. The algorithm
then recursively partitions the ’sanitized’ dataset using kd-tree partitioning technique and uses
the resulting keys to partition the original database. The original database is not queried while
performing kd partitioning instead it uses an approximation of the original database, thus saving
the privacy budget.

Note: section 4.5.1 has been adapted from [9].

4 Contributions

The utility of the kd-tree based partitioning algorithm is directly decided by the parameter ξ0,
ξ1 and data distribution. The overall privacy guarantee offered by the algorithm is based on the
privacy budget used. For experiment purposes, the CENSUS data(http://www.ipsums.org) has
been used. The data has 1 million tuples and 4 attributes: Age, Education, Occupation and
Income, with domain sizes 79, 14, 23 and 100 respectively. The initial experiments on the kd-
tree based partitioning algorithm to perform absolute count and relative count had the following
specifics for its parameters:

parameter value Summary

α 0.1 Overall privacy budget. Cell-based partitioning
uses α/2 privacy budget and kd-tree partition-
ing uses α/2 privacy budget.

ξ1 80 Threshold for variance like function H.

ξ0 [100:900] step 100 Threshold for generating kd tree.

query 1000 Number of random queries.

we tested the algorithm by dividing the overall privacy budget α into α1 and α2 budgets, where
α1 is used by the cell-based partitioning and α2 is used by kd-tree based partitioning. Below are
the specifics for each parameter used in our experiments:

parameter value Summary

α [0.01, 0.05, 0.1, 0.5] Overall privacy budget.

weight [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] Weight is used to determine α1 and α2

from α.

α1 weight ×α Privacy budget for cell-based partition-
ing.

α2 ((1 − weight) ×α) Privacy budget for kd-tree based parti-
tioning.

ξ1 [60, 80, 100, 120] Threshold for variance like function H.

ξ0 [100:900] step 100 Threshold for generating kd tree.

query [1000, 2000, 4000, 6000, 8000] Number of random queries.
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• Query error vs different α
We analyze the effect of α on the absolute count error and relative count error by varying α.
The values of α1 and α2 is calculated using weight as described in the table above. Figure
1 to 2 show that α = 0.1 provides best results. We can see that the value of α significantly
affects the query error.
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Figure 1: query error for different α when ξ0=300
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Figure 2: query error for different α when ξ0=500

• Query error vs different ξ0
We choose a fixed value of α and analyzed the results on query error by varying the value for
threshold ξ0 used to generate kd-tree. Figure 3 and 4 show the results
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Figure 3: query error for different ξ0 when α = 0.1
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• Query error vs Number of queries
In the initial setting for experiments, we choose 1000 random queries to analyze the effects
of varying α or ξ0. For this part, we fixed the value of α and ξ0 and varied the number of
random queries generated. Figure 5 and 6 show that the query error is significantly affected
by the number of random queries. For α = 0.1 and ξ0, 4000 random queries gives the best
result.
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Figure 5: query error for varying number of random queries when α = 0.1 and ξ0 = 400
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Figure 6: query error for varying number of random queries when α = 0.1 and ξ0 = 500

itemQuery error vs different ξ1
We choose a fixed value of α and ξ0 and analyzed the results on query error by varying the
value for threshold ξ1 used a threshold for variance like metric H. Figure 7 and 8 show that
for different α the behaviour of a particular ξ1 is dependent on α. Figures 7 to 10 show the
results.
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Figure 7: query error for different ξ1 when ξ0=300 and α = 0.05
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Figure 9: query error for different ξ1 when ξ0=300 and α = 0.1
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Figure 10: query error for different ξ1 when ξ0=500 and α = 0.1

5 HIDE

So far we have seen techniques to address privacy issues when data is organized in form of a table
or structured data. However this is not always the case because large amount of personal data is
in the form of unstructured text. e.g. most medical notes, lab reports are unstructured text and
contain personal identifiable information about individuals. Sharing of such unstructured data is as
important and valued as releasing of statistical databases. Here too it is important to protect the
privacy of individuals before releasing the data. Personal identifiable information is protected under
the Health Insurance Portability and Accountability Act (HIPAA). HIDE: An Integrated System
for Health Information DE-identification is a framework developed to anonymize both structured
and unstructured data.

5.1 De-identification Models

Currently HIDE provides three de-identification models to address the issue of data privacy. In-
formation that can be used explicitly to identify a person is termed as Personal Health Informa-
tion(PHI) by HIPAA. Direct identifiers such as name, social security, medical record number and
indirect identifiers such as age, gender etc all count as PHI. It is mandatory for any data provider
to remove PHI from the data before releasing it to public.

• Full de-identification
In full de-identification model all HIPAA identifiers are removed. Since most of the valuable
information is removed from dataset the resulting data provides minimum data utility.

• Partial de-identification
In partial de-identification only certain number of HIPAA identifiers are removed thus result-
ing in better data utility from the release data.

• Statistical de-identification
Statistical de-identification model attempts to provide maximum data utility while guaran-
teeing a statistically acceptable data privacy.
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5.2 Conceptual Framework

The HIDE framework consists of three important components.

• Attribute Extraction
HIDE takes heterogeneous data as input, which is fed to the attribute extraction component
where personal identifiable information is tagged using statistical learning. A conditional
random field based named entity recognizer is used to label and tag sensitive information. A
CRF is trained on sample data files after which it automizes the process of labeling sensitive
information thus avoiding manual labeling. Once all the sensitive information is labeled and
linked it creates an identifier view.

• Data linking
Once sensitive information is labeled it is fed to the data linking component where records
belonging to same individual are linked together. Once the linking is done the linked data
is fed back into the attribute extraction component to check for sensitive attributes. This
iterative step is unique feature of the HIDE framework.

• Anonymization
Once identifier view is fed to the anonymization component, different privacy models are
used to obtain full de-identification, partial de-identification of statistical de-identification by
attribute removal or suppression. Anonymization techniques based on attribute generalization
which guarantees data privacy based on privacy principles like k-anonymity, l-diversity can
be used.

5.3 Future Works

At present anonymization techniques based on k-anonymity and l-diversity through attribute gen-
eralization are used to perform anonymization and thus guarantee privacy. Future works on HIDE
framework is to incorporate differential private mechanism in the Anonymization component to
guarantee stronger privacy for released information.

Note: Section 5 has been adapted from [3, 4, 5].

6 Conclusion

We studied the importance of preserving privacy of individuals in a statistical release of a dataset by
reviewing weak and strong privacy preserving mechanism. Starting with k-anonymity we learned
several mechanisms to preserve privacy and eventually builded our study to differential privacy
which is considered to be a powerful privacy preserving mechanism available at present. Differential
privacy is prefered because it guarantees privacy of individual regardless of whether an individual
participates in a database or not. This aprroach will encourage more individuals to take part in
databases that can later be used by researchers and analysts to better understand ways of human
society and thus help towards betterment of commnunity at large. For, the differentially private
histogram release algorithm we can add the Avg aggregate query in the implementation to increase
the utlility of the algorithm. By adding the Avg aggregate query we will be able to get a better
understanding of the distribution in original database as well as we can compare the results of Avg
query on different datasets and thus rate the usefulness of each dataset. For future works, I am
interested in learning and understanding methods and techniques that will introduce differential
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private mechanism in the HIDE framework which will make it more robust and powerful and thus
act as an interactive/non-interactive interface which guranatees differential privacy.
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