A Fast Compact Indexing Algorithm for M anaging L ar ge-Scale Robinson-Foulds Distance
Matrices

Beenish Jamil Tiffani L. Williams

bjamil@gmu.edu tlw@cse.tamu.edu

Abstract
Phylogenetic analysis can produce up to hundretlsoosands of trees, with each tree being a hypisthe
for the evolutionary relationships between a grofiprganisms or taxa. The difference between these
trees can be found using the Robinson-Foulds (RErte metric, a commonly used metric for
phylogenetic tree analysis, and then stored intaixnalowever, there are currently no efficient meds
of extracting data from large RF matrices, which ke up many gigabytes of disk space, due tt/@he
bottlenecks that comes with dealing with such Idilgs. One possible solution is through the usarof
index. We have developed an algorithm for produeingndex for RF matrices that requires minimal
generation time and search time. We tested ouritilgoon RF matrices ranging sizes between 3,419 to
135,135 trees and 60 to 567 taxa. We found thdatigest matrix we tested (135,135 trees) tooktless
14 minutes to generate, a considerably fast sg@a=tching our index for queries that required the
traversal of the entire matrix took 27% to 99% l&s® than searching the RF matrix for those same
values. The applications of this index show a fgtromise and we hope that they will aid faster

phylogenetic analysis.

I. INTRODUCTION

The goal of phylogenetic studies is to find thestrelationships between a group of organisms or
taxa. These relationships are commonly represéntibe form of trees. These trees can have a yaofet
applications in drug and vaccine development, awasien efforts and much more [5], [3]. However,
finding the correct tree for a group of organissam NP-hard optimization problem that requires
heuristics on the tree space [3]. These heuristiogeturn up to tens of thousands of possible fieea
single group of organisms. Finding the correct fremn among such a large tree set is not a singsle t
One of the most commonly used method for analyzerg large tree sets is constructing consensus, or
summary, trees for them. However, some biologicsitipificant data can be lost in the constructibn o
these trees [4]. Another method of analyzing thieses is by calculating the pairwise distances betw
all of the trees in the tree set using the Robirismds (RF) distance metric and analyzing thestree

based on those distances. These matrices stagaificsint amount of information about the origitrae

space and are an excellent source for “understgridevolutionary relationships” represented @ th
generated tree sets [3], [6].

The RF matrices artex t matrices whereis the size of the tree set. The problem arisdsatha
tree sets get larger, these matrices grow quadligtio size and quickly become difficult to manaaged
search in a time efficient manner. With tree setsigetting in the tens of thousands of trees seatey,
these square matrices are becoming harder to handlguery due to the time requirements of simply
reading these matrix files. We proposed a fastimgdealgorithm for the RF matrix to help deal withis
I/O bottleneck.

The type of searches we were interested in wesettiat searched for a particular RF distance
in the matrix and that required searching eitherahtire RF matrix or a significant proportion of i
These search types are generally time consumirng #iey require a significant amount of time fatju

reading the matrix.

Il. BACKGROUND

A. Phylogenetic Trees

These are trees that describe evolutionary reksttips between a set of taxa. The leaf nodes are
the studied taxa while the internal nodes are iypdthetical ancestors” [1]. The edges describe the
relationships between the various nodes.

Phylogenetic trees can be described in terms afrtiijons. They are obtained by removing a
single edge from the tree, dividing the tree intaatly two parts [2]. There can as many bipartigiama
tree as there are edges. This two part represemiatimportant when calculating the RF distances

between two trees.

B. Robinson-Foulds Distances

The Robinson-Foulds distance metric describes ¢gesg of dissimilarity between two trees. It
can be defined as “the total number of bipartititreg differ between them” [1]. The maximum possibl
RF distance between two binary trees is the tataiber of taxa in those trees minus three.

C. Robinson-Foulds Matrices

All of the RF distances between all of the treea tree set can be calculated and stored in an RF
matrix. These are symmetric, square matrices eftsiz, wheret is the total number of trees in the
studied tree set. As the tree sets get largeetdt dgjfficult to give a descriptive label to eaoket Instead,
the row and column numbers in the matrix are usddeg identification numbers. Generally, the numbe
of possible RF distances in a tree set is muchtfessthe possible tree pairs (or, cells) in thérima

D. FastHashRF
This software is a fast method for calculating Rtematrix for a tree set [1]. It is based on
HashRF, which is among the fastest RF matrix catig software available [6].

E. Indexing
Indexing is essentially a method for reorganizimg data of interest in a data structure for fast

future retrieval. It is widely used by large datedm

[ll. THE COMPACT INDEXING ALGORITHM
We aimed to make our algorithm as fast as possibtbat more time could be spent on searching the
index rather than on generating it. In order tdahds, we tried to use as few steps in our algorigsm
possible since we expected these steps to posmhigpeated millions to billions of times during th
course of our algorithm's run. We also tried touel/O, a slowing factor in most algorithms, ashas
possible for this reason as well. We made a feveiggizations and base assumptions about our tesmsp
to help towards this goal:
1. Since a RF matrix is symmetric, only the data ie sitle of the main diagonal needs to be
recorded.
2. The users of the RF matrix are only interestedhique trees. That is to say, if two trees are zero
RF distances apart, they are identical. Therefofermation about only one of those trees needs
to be stored.
3. Since the number of possible RF values in largeiceastis usually much less than the total
number of cells in the matrix, the probability titla¢re will be long runs of the same RF distance

in a row is high.

The Index:

Our algorithm generates a compact, easy to navigdéx for the RF matrix. It creates a separate
file for each of the possible RF distances forttbe set. These files store all of the tree paias are that
RF distance apart from each other. Only one vauposition ID, represents each tree pair. It igivied
by flattening the matrix into a row ordered, onmeénsional array. This value can be parsed intovibs

tree, or tree ID, parts using the following equasio

treel = lpositionIDJ (1)

total trees

tree2 = position ID % total_trees (2)

If a sequence of consecutive tree pairs (or run)é matrix have the same RF values, then only
the start and end points of that sequence is stord@ RF matrix. Each line in the index filesrs®ma

single value or range (start and end points of. fChe values in the index files are in descendirgr.

01 2 3 4 5 01 2 38 4 5
0 0
A | 1 6
2 2 3 2 12 13
8 2 1 2 3 18 19 20
4 3 2 2 2 4 24 25 26 27
5 38 1 2 1 1 5 30 31 32 33 34
RFO RF1 RF 2 RF 3
34-33 32 30
31 27-25 24
19 20 13
6 18
12

Figl: A sample RF matrix (top left), the positiat'sifor every cell in the matrix (top right) ane timdex files that would
be generated for the matrix by our algorithm (boftoCells in the lower triangle / below the maiaginal (in black) are

the only ones processed by our algorithm.

The Algorithm:

Our algorithm loops backwards through the lowargie of the RF matrix, starting from the last
row. It assigns each cell in the matrix a uniqusitian ID, obtained by flattening the two dimensabn
matrix out into a row ordered one dimensional maffhe position ID is thus:

position ID = total_trees * row + column (3)
It is this position ID that is stored in the indesee Figl). As it traverses the matrix, it stotes t

positions IDs of every cell in its matching RF valarray. Once that array size reaches a set maximum

value—10,000 in our runs—it writes all of thoseued out to the RF index file and resets the array.

Algorithm 1 : A Compact Indexing Algorithm
Require: A ¢ x t RF matrix, matriz, with m taxa

{All cells in the following arrays are initialized to 0}
!'ruﬂ,p(m{m]
start[m][100001]

end[m][100000]

for row =t to 0 d: do
if matriz[row| is not an identical tree then
pos_id = (row % t) + row — 1

for col = row — 1 to 0 do
current r f = matriz|row]|col|

if current cell is not part of an RF run then
store last_pos[current_r f| at the end of the start[current_rf] array
store the current pos_id at the end of the end[current_rf] array

if end[current_rf] is full then
write startjcurrentr f] and end[current_r f] to file
reset the start[current.r f] and end[current_r f)
end if
end if

if currentrf == 0 then
flag tree with id eol as an identical tree
end if

pos_id -= 1
last_pos|current_rf] = pos._id
end for
end if
end for

If, in its traversal, it sees a cell with an RFuabf zero, it flags the column associated with tha
cell as an identical tree and skips it when it hescthat row.
If the algorithm encounters a continuous run ofghme RF value in a row, it only stores the start

and end points of that run in the associated R&evalray.

Storing Position ID in Index Files:

We opted to store a single position ID for eveegtpair/cell in the matrix rather than the row and
column values based on preliminary indexing tetese tests showed that, if index files stored buth
row and column values (i.e. both tree IDs), thengim of the disk space requirements of all ofrilex
files for an RF matrix could go up to three timles disk size of the matrix itself. Storing only one

position ID for each tree pair instead removed pinagblem.

Indexing with FastHashRF

We implemented our algorithm as part of FastHasinR¥¥der to avoid the file overhead and
consequent program slowdown associated with reatm@&F matrix from file. With FastHashRF, the
matrix values only had to be obtained from a habletcreated at run time and stored in the program’

memory.

Index’s Descending Order:

Our index is in descending order to facilitate &rtyre search implementations for our index
where all trees that are RF distadcavay from a particular tregare being searched for in the index
files. That is to say, all positions in the RF matrhereq is either the row or the column value ahid
the value stored in that cell. With our index, oglyeeds to be searched for rather than bathdd.
Since our algorithm only traverses the lower trlargf the matrix, the column value will always lesd
than the row value for all of the values in ourérdThis also means that the last possible placreine
guery treegg can be found is in the row position. If the indesrevin ascending order, this would mean
that the entire index file would have to be sealdheorder to get all search results. However, it
index files in descending order, this means thaistrarch only has to continue until a row valuesiow
than the query tree’s tree ID is seen in the intlée.believe that this ordering can save some timsaich
searches.

Alternatively, this ordering would not be necessétiie upper triangle of the RF matrix were
traversed rather than the lower one. In this dagesearch could be stopped when a row ID largéner
than smaller, thag was found in the index.

IV. EXPERIMENTAL MATERIAL
We performed our tests on tree sets spanning 66tdaxa and 3,419 to 135,135 trees. Our
experiments were performed on 2.50 GHz Intel Coguad Q8300 processors with 3.9GiB memory.

The Ubuntu 8.10 operating system was used.

V. METHODS
1. Algorithm's Performance:

Experiment 1: Index Generation Speed Test:

We tested our algorithm's speed by comparing ttiexigeneration time—i.e. the time to
calculate the index values and write them all is-fiwith the RF matrix print-to-screen time, theyonl
alternative if all matrix data is needed. Bothitiex generation algorithm and RF matrix print aipon
were implemented as part of FastHashRF. We recdhdedverage program runtime over a minimum of
6 trials for each tree set in our experimental grdthe results are summarized in Fig2.

2. Index's Performance:

Experiment 2: Searching for all Instances of x kftathce

We tested our algorithm's efficiency in searchioigdil instances of a particular RF distance in
the matrix by searching all of our tree sets tlzat kess than 90,000 trees. We searched for aliippe$sF
distances for the 60 taxa/3419 trees and 8 tax@g5.0ees tree set. We searched for 34% of thelpess
RF distances of the 500 taxa / 5194 trees tre@sdt8% of the 150 taxa/ 20,000 trees tree seeeThr
trials were conducted on the matrix as well adridex for each of the RF values searched and their
average was stored. Both search algorithms werkememted in Python. Python's random number
generator was employed with a seed of 0.

We compared our fastest implementation of thiscteype for the matrix and the index. In the
matrix, this implementation returned all tree péirat were x RF distances away while in the inday o
unique trees were returned. Again, our assumptiastivat unique trees are the only trees of intémest

RF matrices. To be consistent, all searches weferpeed on the data below the diagonal in the RF
matrix.

VI. RESULTS

4200
3600
3000
2400
1800
1200

600

0 [|

5194 trees / 500 taxa 20000 trees / 150 taxa 90002 trees / 264 taxa
3419 trees / 60 taxa 10395 trees / 8 taxa. 33306 trees / 567 taxa 135135 trees / 9 taxa

Time Taken (s)

Treesets

B Program Runtime with Index Generation & B Program Runtime with Matrix Print (s)
Storage (s)

Figl: Relative FastHashRF Runtime with IndexingRmsnting Out the RF Matrix to File

Table 1: Percent Decrease in Program Runtime widb)ing vs. RF Matrix Print

Tree Set Time Decrease (%)
3419 trees / 60 taxa 76.26
5194 trees / 500 taxa 58.77
10395 trees / 8 taxa 79.78
20000 trees / 150 taxa 29.76
33306 trees / 567 taxa 2212
90002 trees / 264 taxa 59.44
135135 trees / 9 taxa 78.79

Experiment 1:
We observed that the time saving in generatingralex rather than printing out the RF matrix

becomes noticeable in very large (greater than080@es in size) matrices (Fig2). For RF matriess
than that size, the amount of time saved is orguple of seconds to a minute. However, Table Wsho
that our algorithm is always at least 20% and up9® faster than printing out the RF matrix on the
matrices tested. Still, this speedup is only vesilvthen the print time of the RF matrix is largeitas for
very large matrices. Our algorithm's speedup wastinthe result of the assumptions about the tree
space listed earlier—that is:

1. Data in only one side of the diagonal is neede@foomplete picture of the matrix.

2. The user is only interested in unique trees.

3. The probability of consecutive runs of the samedigkance (ranges) in a row is high in large

matrices.

These assumptions decreased the amount of dataetbded to be stored in our index files. Data in
only half the matrix was written to file. If identl trees were observed, only the first observethirce of
it was written to file. If a range was observedydhe start and end points of it were writtenite. f

Since writing to file was the slowest part of olgaaithm, and data was written to file every time
there were 100,000 values to write to file for aipalar RF value. This decrease in informatiosdve
was beneficial to our algorithm's speed. It redubedotal number of writes and thus improved our
algorithm's index generation speed.

Our algorithm thus performed best when there warensiderable amount of long ranges or identical

trees present in the RF matrix since a lot more tivas spent on processing the matrix rather thamger

the information to index files. Inversely, it pemfieed worst when there were little to no identicaet or

ranges.

Table 2: Percent Decrease in Search Time whentgegrte Index rather than the RF Matrix

Tree Sets Percent Time Decrease (%
3419 trees / 60 taxa 99.52
5194 trees / 500 taxa 80.21
10395 trees / 8 taxa 27.72
20000 trees / 150 taxa 97.23

Experiment 2:
Our index usually returned search results muclefaghen searching for all tree pairs that were a

specific RF distance apart. Even in the worst tested, (8 taxa / 10395 trees) searching our index
proved to take more than 27% less time than seag¢he RF matrix on average. In the best case,
searching our index took more than 99% less tiraa gearching the RF matrix.

The reason why searching our index was so fasboe of the tree sets tested was due to the fact
that, in tree sets with a large number of taxa, ywdrihe possible RF distances usually don't shpwru
the matrix at all. However, there is no quick wéyiding that out without traversing the entire tnvaif
the RF matrix is being used as the search strudurehe other hand, if our index is used instalidhat
needs to be checked is whether there is any dathdbparticular RF distance or not. This can save
immense amount of time in large matrices. For exangearching the 33306 trees / 567 taxa tree xnatri
took an average of one and a half hours for angiRfance. This time would be required even if the R
distance being searched were not present in th@dREx.

Using our index instead saves that entire timenBwveen the files were not empty, searching our
index still proved to be faster than searchingRRematrix for the same value. In the worst casete8
taxa / 10395 trees), there were only five posditfedistances in the matrix (number of taxa — 3thso
index files were considerably large and the speestarch them was limited by file I/O. However, the
amount of file /O for index files is always muask than that of the RF matrix since the indes file
contain less information than the RF matrix. Thisvhy searching the index still took 27.72% lesteti
than searching the RF matrix for this tree set.thisrsame reason, there should hypotheticallydbe n
cases where our index performs worse than the Rfxnfiar such searches.

Another reason searching our index was fasterdkarching the RF matrix was due to the fact
that our index returned only unique trees whilertiarix returned all trees. Only 23% of the 60

taxa/3419 trees tree set is composed of uniqus.tBmeonly that small proportion of the matrix hade

searched and returned when using the index, thenaling the search results fast.

VIlI. CONCLUSION AND FUTURE WORK

Phylogenetic research produces up to tens of tindgsaf candidate trees for a set of organisms
in the search for the one correct tree to deschibie evolutionary relationships. However, a louseful
data, in the form of Robinson-Foulds matrices diaalyzing these large candidate tree sets cannot be
efficiently used at the moment. It is time consugrio perform any type of queries that require & ful
matrix traversal of large RF matrices. We propameihdexing algorithm that helps speed up these
gueries.

Our experiments tested the performance of our imgexigorithm as well as the usability of the
index generated for the type of searches we weéeeeisted in. When searching for all occurrences of
particular RF value in the RF matrix, searching algorithm proved to take 27% to 99% less time than
searching the matrix for the same RF value on @eerBhe best cases were those tree sets witloh lot
taxa, and hence a lot of possible RF distancesdagtihe trees. Inversely, the worst cases were thos
with only a few taxa in the tree set. Our experitaavere based on the assumption that only uniees tr
are the trees of interest. The generation timauoftgorithm is consistently 20% to 79% faster than
print time of the RF matrix for our experimental.sehis speedup becomes more noticeable when
indexing very large RF matrices where the RF matrirt time can take a considerable amount of time.

Our work has a lot of potential of extension. Aduial work is needed on optimizing the
guerying algorithms used on our index as well amboducing support for other, different types of
gueries that users of the RF matrix might be irsteieéin into our index. Since our algorithm perferm
best with long runs of the same RF value, futurekveould include implementing a preprocessing sbep
our index that would rearrange the trees in theirmad that a maximal number and length of suclsrun

occur in the matrix in order to speed up the indgxrocess.

VIIl. ACKNOWLEDGMENTS
We would like to thank the Distributed Researchétignces for Undergraduates (DREU)
program for making this research experience passibl

REFERENCES
[1] Seung-Jin Sul and Tiffani L. Williams, "A RandomikzAlgorithm for Comparing Sets of
Phylogenetic Trees," Asia- Pacific Bioinformaticer@erence (APBC'07), pp. 121- 130,2007.

[2] D. F. Robinson and L. R. Foulds. Comparison ofi@®gnetic Trees. Mathematical Biosciences,
53:131-147, 1981.

[3] Seung-Jin Sul, Suzanne J. Matthews, and TiffaNViliams, "New Approaches to Compare
Phylogenetic Search Heuristics", IEEE Internatiddahference on Bioinformatics and
Biomedicine (BIBM'08).

[4] D. M. Hillis, T. A. Heath, and K. S. John. Analysind visualization of tree space. Syst. Biol,
54(3):471-482, 2004.

[5] D. Bader, B. M. Moret, and L. Vawter. Industrigipdications of high-performance computing
for phylogeny reconstruction. In H. Siegel, editeroceedings of SPIE Commercial Applications
for High-Performance Computing, volume 4528, pade3-168, Denver, CO, Aug. 2001.

[6] Seung-Jin Sul and Tiffani L. Williams, "An Experimtal Analysis of Robinson- Foulds Distance
Matrix Algorithms", European Symposium on AlgoritarfESA'08).

