
Abstract—The stage-in of input data to a scientific 
workflow runs on a remote cluster accounts for a 
significant amount of the workflow’s runtime. In 
this paper we present an implementation of a Data 
Placement Service, integrated with the Pegasus 
Workflow Management System, where Pegasus 
sends stage-in requests to the DPS for transfer. The 
goal of this implementation is to improve workflow 
runtime by staging in data asynchronously.  

 
I. Introduction 
 
 Many areas of science have complex 
analysis or simulations that have benefitted 
from workflow technologies. These science 
applications may contain hundreds of 
thousands of interdependent tasks that require 
a large amount of data in order to begin 
computations. The management of this data 
plays a significant role in the running of a 
workflow. Previous studies have shown that 
improving the management of data can 
significantly improve the efficiency of a 
workflow [1]. Techniques like data prestaging, 
where the input data is transferred before the 
workflow even begins execution, and accessing 
data via symbolic links that is on a storage 
system available to a computation cluster have 
been shown to improve workflow runtime.  

One study in particular looked at the 
stage-out and cleanup of data produced by an 
executed workflow. By assigning the tasks of 
stage-out and cleanup to an asynchronous Data 
Placement Service Amer, et al. [2] showed that 
workflow runtime can be improved significantly 
since the management system is no longer 
responsible for these tasks.  

This paper examines the effect of 
assigning stage-in jobs to an asynchronous Data 
Placement Service (DPS) and if this will improve 

the runtime of a workflow. We integrated a DPS 
with the Pegasus Workflow Management 
System [3], where Pegasus will rely on the DPS 
to perform stage-in data transfers. We explored 
the benefits of this change using the astronomy 
application Montage [4]. 
 This paper begins with an overview of 
the Pegasus Workflow Management System 
and its default behavior handling the stage-in of 
data. We then describe the different 
modifications made to Pegasus in order to use a 
DPS to perform stage-in, while still keeping the 
data dependencies need to run each job of the 
workflow. Afterwards, we describe the steps 
preformed by the DPS to stage-in the data. 
Next, in section III, we describe the workflow 
used to examine the effect of this change in the 
workflow’s runtime. In section IV we describe 
the performance evaluation, what variables 
were measured, and what results we found. We 
conclude with future work in this area. 
 
II. Pegasus and the Data Placement Service 
 
 Pegasus is a workflow management 
system designed to map and execute complex 
workflows onto distributed systems. It allows 
users to specify an abstract of the workflow 
they wish to run without worrying about the 
exact resources it will be run on, or if the 
runtime of their workflow will be optimal.  

Pegasus is run on submit host, where 
the workflow application and other 
configuration details are specified. First the 
workflow is planned using Pegasus, then 
Pegasus submits the executable workflow it just 
planned to a remote resource. This remote 
resource, the execution site, is where the actual 
computations are preformed. 
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When a workflow is submitted to an 
execution site each job must wait in two 
successive queues before being executed. The 
first is the local queue on the submit host. 
Pegasus only releases a job into this queue if its 
dependant jobs have completed successfully. If 
job two depends on the output from job one, 
job two will only be released into the local 
queue once job one has competed successfully 
on the execution site. Once a job has passed 
through the local queue, it must then also pass 
through the remote queue before being 
executed. 
 

 
 Figure 1: Workflow Submission and 
Execution 
 
Modifications to Pegasus: 

 Pegasus’ default behavior for stage-in 
jobs is to call a data transfer service, like 
GridFTP, internally and block until all stage-in 
transfers are complete. This blocking preserves 
the data dependencies in the workflow so that 
each subsequent job has the data it needs 
available. Once the Pegasus stage-in is 
complete, depended compute jobs are released 
into the local queue.  
 Our modified Pegasus does not call a 
file transfer service. Instead, a request is 
formatted and sent to the DPS asking for it to 
transfer the file. This request is formatted as a 
list of source/destination physical filename 
pairs. From the view of Pegasus this request is 
non-blocking as the DPS releases Pegasus 
before beginning to transfer files and the 
transfer time does not impede the progression 
of the workflow. 
 Because we are examining stage-in, 
subsequent jobs in the workflow are dependent 
on the success of the transfers preformed by 
the DPS. The workflow cannot proceed without 
these requested files, meaning some 
communication is required between the DPS 

and Pegasus.  This communication was achieved 
by implementing a replica location service (RLS) 
that holds information on the transferred files 
[5]. After sending the request, the modified 
Pegasus stage-in job then polls this RLS for the 
DPS status of each requested transfer. If any of 
the transfers are marked as failed, then that 
stage-in job fails. If all requested transfers are 
marked as successful, Pegasus can continue the 
execution of the workflow by releasing the 
subsequent jobs into the local queue. 
 

 
 Figure 1: Overall Control Flow 
 
 We implemented this RLS polling in two 
ways. The first was to have it simply as part of 
the stage-in job, where directly after the 
request was sent, polling began to see if the 
transfers completed successfully. We did not 
expect this implementation to have a beneficial 
effect on the runtime of the workflow. In 
comparison to Pegasus’ default behavior this 
implementation added the extra overhead of 
communicating with both the RLS and DPS to 
the transfers that Pegasus had already been 
making in its default behavior. 
 The second implementation moves this 
polling into the beginning of the workflow’s 
compute jobs. Before each compute job 
Pegasus polls for the files specific to that 
compute job. With this implementation, in 
order for intermediate data, which is not sent 
to the DPS for transfer, to not cause the job to 



fail the polling of the RLS must be modified. The 
entries in the RLS that do not have a DPS status 
attribute must be assumed to have been 
transferred by another service. Therefore, only 
the files that have a DPS status in the RLS are 
polled for success or failure. 
 We expect this implementation to 
improve the runtime of the workflow because 
transfers are now made asynchronously to the 
executing workflow. One the stage-in job 
reaches the execution site it sends the DPS 
request and finished successfully. Then the 
subsequent compute jobs are released into the 
local queue. While these compute jobs travel 
though the local and remote queue, the DPS is 
transferring the files they will require. This 
means the transfer and queue time can run in 
parallel for a time, rather than one after the 
other. 
  

 
 Figure 2: Time gain using polling within 
the compute job. 
 
 The drawback to this second 
implementation is that if compute job reaches 
the execution site long before the file is finished 
transferring, the requisite polling will waste CPU 
time. 
 
Data Placement Service:  

The DPS that we modified was modeled 
from a DPS previously designed to handle stage-
out and clean up jobs for the Pegasus Workflow 
Management System. Like that model, our DPS 
manages a central thread pool for stage-in 
requests and uses GridFTP to perform the 
transfers. The requests are received over a java 
RMI. GSI security is not currently used in our 
design. 
 When the DPS receives a stage-in 
request it first updates the RLS so that each 
requested transfer has a DPS Status of “in 

progress”. Then the DPS releases the request 
and checks to see if the destination directories 
exist. If not, the DPS recursively creates this 
directory. If the source file cannot be found, the 
DPS makes five attempts at the transfer before 
giving up. Each file is sent using GridFTP. If the 
transfer completes successfully, then the DPS 
status in the RLS is updated to success. If any 
error occurs the entry is updated to error.  
 

 
 Figure 3: Data Placement Service 
 
III. Evaluated Workflows 
 
Montage:  
 Montage [4] is an astronomy 
application used to create science grade images 
of the night sky. It is an I/O intensive application 
that takes many smaller input images, re-
projects, overlaps, and corrects them though a 
series of steps to make a comprehensive final 
image. We used Montage as our test 
application because it is both widely used in the 
scientific community and requires a large 
number of input files to be staged in. Workflows 
of higher degrees require more input data and 
compute jobs, and produce a larger image of 
the night sky. 
  
 
IV. Performance Evaluation 
 
Experimental Setup: 
 The DPS ran on a 2 core, 2.66 GHz, 
Linux machine with 2 GB of RAM, Pegasus also 
ran on a 2 core, 2.66 GHz, Linux machine with 2 
GB of RAM (the submit host), and the workflow 



was executed on a twenty node Linux based 
cluster, with each node running Linux 2.6.23 
kernel on a 4 core Intel Xeon 2.33 GHz CPU and 
8 GB RAM (the execution site). 
 In our experiments we used a Corral 
Server to provision resources on the execution 
site before running the workflows in order to 
provide a stable testing environment. All 
experiments were run using this configuration. 
 
Measurements Taken: 
 To examine the performance change of 
the workflow we looked first at the overall 
runtime. We measured the runtime of the 
workflow using the default stage-in preformed 
by Pegasus, as well as both implementations of 
the DPS stage-in with polling in Pegasus. For all 
three configurations we planned to run the 
workflow five times and computed the average 
runtime and standard deviation. 
  
Results:  
 The experiments were run on Montage 
workflows of degree 0.5 and 8. When running 
the 0.5 degree no other runtime improvement 
techniques, such as clustering, were used. The 8 
degree Montage was performed with 
clustering. This allowed multiple compute jobs 
to be clustered into one job. Here polling acts 
upon this clustered job as if it was only one job. 
The job polls for each file needed by every 
compute job in its cluster before running any of 
the contained jobs. 
 Preliminary results from the 0.5 degree 
Montage showed no significant change in the 
runtime for either of our implementations. 
 Preliminary results from the 8 degree 
Montage showed a slight, but noticeable 
decrease in the runtime for workflows when 
using implementation two, polling before the 
compute job.  
 
V. Conclusions and Future Work 
 Unfortunately, due to time constraints 
we were unable to run a full battery of test. 
Preliminary testing was all we were able to 
achieve. We documented our changes 
thoroughly so that the work can be picked up at 

a later date and continued. This work includes 
fully testing our implementations and looking at 
other implementations for polling in Pegasus. 
Further runtime improvement might be 
achieved if the location of the polling and the 
amount of clustering can be tuned and 
optimized for a workflow. 
 Future work in this area includes 
looking further at ways to implement 
asynchronous stage-in communication between 
a DPS and a workflow management system. 
Further testing on alternate workflows, multiple 
workflows, and grids that are in higher demand 
(like the Open Science Grid) would also help 
improve our understanding of asynchronous 
data stage-in. Future work for a DPS also 
includes adding VO policy considerations to its 
data management, including data storage 
availability and policies.  
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