
Abstract—The stage-in of input data to a scientific
workflow runs on a remote cluster accounts for a
significant amount of the workflow’s runtime. In
this paper we present an implementation of a Data
Placement Service, integrated with the Pegasus
Workflow Management System, where Pegasus
sends stage-in requests to the DPS for transfer. The
goal of this implementation is to improve workflow
runtime by staging in data asynchronously.

I. Introduction

 Many areas of science have complex
analysis or simulations that have benefitted
from workflow technologies. These science
applications may contain hundreds of
thousands of interdependent tasks that require
a large amount of data in order to begin
computations. The management of this data
plays a significant role in the running of a
workflow. Previous studies have shown that
improving the management of data can
significantly improve the efficiency of a
workflow [1]. Techniques like data prestaging,
where the input data is transferred before the
workflow even begins execution, and accessing
data via symbolic links that is on a storage
system available to a computation cluster have
been shown to improve workflow runtime.

One study in particular looked at the
stage-out and cleanup of data produced by an
executed workflow. By assigning the tasks of
stage-out and cleanup to an asynchronous Data
Placement Service Amer, et al. [2] showed that
workflow runtime can be improved significantly
since the management system is no longer
responsible for these tasks.

This paper examines the effect of
assigning stage-in jobs to an asynchronous Data
Placement Service (DPS) and if this will improve

the runtime of a workflow. We integrated a DPS
with the Pegasus Workflow Management
System [3], where Pegasus will rely on the DPS
to perform stage-in data transfers. We explored
the benefits of this change using the astronomy
application Montage [4].
 This paper begins with an overview of
the Pegasus Workflow Management System
and its default behavior handling the stage-in of
data. We then describe the different
modifications made to Pegasus in order to use a
DPS to perform stage-in, while still keeping the
data dependencies need to run each job of the
workflow. Afterwards, we describe the steps
preformed by the DPS to stage-in the data.
Next, in section III, we describe the workflow
used to examine the effect of this change in the
workflow’s runtime. In section IV we describe
the performance evaluation, what variables
were measured, and what results we found. We
conclude with future work in this area.

II. Pegasus and the Data Placement Service

 Pegasus is a workflow management
system designed to map and execute complex
workflows onto distributed systems. It allows
users to specify an abstract of the workflow
they wish to run without worrying about the
exact resources it will be run on, or if the
runtime of their workflow will be optimal.

Pegasus is run on submit host, where
the workflow application and other
configuration details are specified. First the
workflow is planned using Pegasus, then
Pegasus submits the executable workflow it just
planned to a remote resource. This remote
resource, the execution site, is where the actual
computations are preformed.

Asynchronous Data Stage-in to Improve the Performance of
Scientific Workflows

Erin Griffiths, Samuel Hopkins, Ann Chervenak, Ewa Deelman

University of Southern California Information Sciences Institute
Marina Del Rey, CA USA

{ering,shopkins,annc,deelman}@isi.edu

When a workflow is submitted to an
execution site each job must wait in two
successive queues before being executed. The
first is the local queue on the submit host.
Pegasus only releases a job into this queue if its
dependant jobs have completed successfully. If
job two depends on the output from job one,
job two will only be released into the local
queue once job one has competed successfully
on the execution site. Once a job has passed
through the local queue, it must then also pass
through the remote queue before being
executed.

 Figure 1: Workflow Submission and
Execution

Modifications to Pegasus:

 Pegasus’ default behavior for stage-in
jobs is to call a data transfer service, like
GridFTP, internally and block until all stage-in
transfers are complete. This blocking preserves
the data dependencies in the workflow so that
each subsequent job has the data it needs
available. Once the Pegasus stage-in is
complete, depended compute jobs are released
into the local queue.
 Our modified Pegasus does not call a
file transfer service. Instead, a request is
formatted and sent to the DPS asking for it to
transfer the file. This request is formatted as a
list of source/destination physical filename
pairs. From the view of Pegasus this request is
non-blocking as the DPS releases Pegasus
before beginning to transfer files and the
transfer time does not impede the progression
of the workflow.
 Because we are examining stage-in,
subsequent jobs in the workflow are dependent
on the success of the transfers preformed by
the DPS. The workflow cannot proceed without
these requested files, meaning some
communication is required between the DPS

and Pegasus. This communication was achieved
by implementing a replica location service (RLS)
that holds information on the transferred files
[5]. After sending the request, the modified
Pegasus stage-in job then polls this RLS for the
DPS status of each requested transfer. If any of
the transfers are marked as failed, then that
stage-in job fails. If all requested transfers are
marked as successful, Pegasus can continue the
execution of the workflow by releasing the
subsequent jobs into the local queue.

 Figure 1: Overall Control Flow

 We implemented this RLS polling in two
ways. The first was to have it simply as part of
the stage-in job, where directly after the
request was sent, polling began to see if the
transfers completed successfully. We did not
expect this implementation to have a beneficial
effect on the runtime of the workflow. In
comparison to Pegasus’ default behavior this
implementation added the extra overhead of
communicating with both the RLS and DPS to
the transfers that Pegasus had already been
making in its default behavior.
 The second implementation moves this
polling into the beginning of the workflow’s
compute jobs. Before each compute job
Pegasus polls for the files specific to that
compute job. With this implementation, in
order for intermediate data, which is not sent
to the DPS for transfer, to not cause the job to

fail the polling of the RLS must be modified. The
entries in the RLS that do not have a DPS status
attribute must be assumed to have been
transferred by another service. Therefore, only
the files that have a DPS status in the RLS are
polled for success or failure.
 We expect this implementation to
improve the runtime of the workflow because
transfers are now made asynchronously to the
executing workflow. One the stage-in job
reaches the execution site it sends the DPS
request and finished successfully. Then the
subsequent compute jobs are released into the
local queue. While these compute jobs travel
though the local and remote queue, the DPS is
transferring the files they will require. This
means the transfer and queue time can run in
parallel for a time, rather than one after the
other.

 Figure 2: Time gain using polling within
the compute job.

 The drawback to this second
implementation is that if compute job reaches
the execution site long before the file is finished
transferring, the requisite polling will waste CPU
time.

Data Placement Service:

The DPS that we modified was modeled
from a DPS previously designed to handle stage-
out and clean up jobs for the Pegasus Workflow
Management System. Like that model, our DPS
manages a central thread pool for stage-in
requests and uses GridFTP to perform the
transfers. The requests are received over a java
RMI. GSI security is not currently used in our
design.
 When the DPS receives a stage-in
request it first updates the RLS so that each
requested transfer has a DPS Status of “in

progress”. Then the DPS releases the request
and checks to see if the destination directories
exist. If not, the DPS recursively creates this
directory. If the source file cannot be found, the
DPS makes five attempts at the transfer before
giving up. Each file is sent using GridFTP. If the
transfer completes successfully, then the DPS
status in the RLS is updated to success. If any
error occurs the entry is updated to error.

 Figure 3: Data Placement Service

III. Evaluated Workflows

Montage:
 Montage [4] is an astronomy
application used to create science grade images
of the night sky. It is an I/O intensive application
that takes many smaller input images, re-
projects, overlaps, and corrects them though a
series of steps to make a comprehensive final
image. We used Montage as our test
application because it is both widely used in the
scientific community and requires a large
number of input files to be staged in. Workflows
of higher degrees require more input data and
compute jobs, and produce a larger image of
the night sky.

IV. Performance Evaluation

Experimental Setup:
 The DPS ran on a 2 core, 2.66 GHz,
Linux machine with 2 GB of RAM, Pegasus also
ran on a 2 core, 2.66 GHz, Linux machine with 2
GB of RAM (the submit host), and the workflow

was executed on a twenty node Linux based
cluster, with each node running Linux 2.6.23
kernel on a 4 core Intel Xeon 2.33 GHz CPU and
8 GB RAM (the execution site).
 In our experiments we used a Corral
Server to provision resources on the execution
site before running the workflows in order to
provide a stable testing environment. All
experiments were run using this configuration.

Measurements Taken:
 To examine the performance change of
the workflow we looked first at the overall
runtime. We measured the runtime of the
workflow using the default stage-in preformed
by Pegasus, as well as both implementations of
the DPS stage-in with polling in Pegasus. For all
three configurations we planned to run the
workflow five times and computed the average
runtime and standard deviation.

Results:
 The experiments were run on Montage
workflows of degree 0.5 and 8. When running
the 0.5 degree no other runtime improvement
techniques, such as clustering, were used. The 8
degree Montage was performed with
clustering. This allowed multiple compute jobs
to be clustered into one job. Here polling acts
upon this clustered job as if it was only one job.
The job polls for each file needed by every
compute job in its cluster before running any of
the contained jobs.
 Preliminary results from the 0.5 degree
Montage showed no significant change in the
runtime for either of our implementations.
 Preliminary results from the 8 degree
Montage showed a slight, but noticeable
decrease in the runtime for workflows when
using implementation two, polling before the
compute job.

V. Conclusions and Future Work
 Unfortunately, due to time constraints
we were unable to run a full battery of test.
Preliminary testing was all we were able to
achieve. We documented our changes
thoroughly so that the work can be picked up at

a later date and continued. This work includes
fully testing our implementations and looking at
other implementations for polling in Pegasus.
Further runtime improvement might be
achieved if the location of the polling and the
amount of clustering can be tuned and
optimized for a workflow.
 Future work in this area includes
looking further at ways to implement
asynchronous stage-in communication between
a DPS and a workflow management system.
Further testing on alternate workflows, multiple
workflows, and grids that are in higher demand
(like the Open Science Grid) would also help
improve our understanding of asynchronous
data stage-in. Future work for a DPS also
includes adding VO policy considerations to its
data management, including data storage
availability and policies.

VI. References

[1] A. L. Chervenak, et al., “Data placement for scientific

applications in distributive environments,” presented
at the Grid Computing, 2007 8

th
 IEEE/ACM

International Conference on, 2007.
[2] M. Amer, et al., “Separating Workflow Management

and Data Staging to Improve the Performance of
Scientific Workflows,” in submission.

[3] E. Deelman, et al., “Pegasus: A framework for
mapping complex scientific workflows onto
distributed systems,” Sci. Program., vol. 13, pp. 219-
237 2005.

[4] B. Berriman, et al., “Montage: A Grid Enabled Engine
for Delivering Custom Science-Grade Mosaics On
Demand,” in SPIE Conference 5487: 2004.

[5] A. L. Chervenak, et al., “The Globus Replica Location
Service: Design and Experience,” IEEE Transactions on
Parallel and Distributed Systems. Vol. 20 (9)
(September 2009), pp. 1260-1272

