

1

DESIGN OF AN IMAGE PROCESSING ALGORITHM FOR

BALL DETECTION

Ikwuagwu Emole

B.S. Computer Engineering „11

Claflin University

Mentor: Chad Jenkins, Ph.D

Robotics, Learning and Autonomy Lab

Department of Computer Science

Brown University, RI

Providence, RI 2010

Table of Contents:
1. Introduction

2. ROS

3. OpenCV

4. Image Processing

4.1 Image Conversion from ROS image message to OpenCV

4.2 Getting and Saving Ball Images

4.3 Obtaining Ball Information from Saved Images

4.4 Ball Detection

4.4.1 Hough Transform

- Shadow Detection

4.4.2 Template Matching

5. Conclusion & Future Work

6. References

2

1. INTRODUCTION

The aim of this research project was to design an algorithm for ball recognition which will be used in a

bigger project – an outdoor soccer game using the iRobot Create, an Asus Eee PC and a camera. This

paper focuses on the computer vision methods that were applied towards achieving this aim. The main

approach used involves edge detection. The paper contains my attempts and the extent to which the

ultimate goal has been accomplished.

The programming language of choice in this project was C++ for the following reasons - it is one of the

languages that are supported by ROS (including Python); it is one of the languages that currently

support OpenCV (including C and Python); and it‟s the language with which the author feels most

comfortable with.

2. ROS

ROS (Robot Operating System) is an open-source, meta-operating system for your robot. It provides

the services you would expect from an operating system, including hardware abstraction, low-level

device control, implementation of commonly-used functionality, message-passing between processes,

and package management.
[1]

This is the main platform upon which all our experiments are run. It is installed on the Asus PC which

is then connected to the iRobot Create and camera. It contains libraries for handling streaming camera

images and also for communicating with the Create‟s motors and sensors.

In ROS, programs are called nodes. For one node to make certain data available to other nodes, it

publishes such data to a topic. A node that needs such data then subscribes to the desired topic. When

many nodes need to run at the same time, one can utilize roslaunch. By creating a launch file that

contains all the nodes, all the process can start at the same time.

3. OpenCV

OpenCV (Open Source Computer Vision) is a library of programming functions for real time computer

vision.
[2]

 It contains functions and methods of obtaining and manipulating image/video data. Aside the

basic functions of displaying, resizing or saving an image, this robust library can aid in methods of

computer vision such as edge detection and object recognition. For our project, the methods of interest

include Hough Transforms and Template Matching.

4. IMAGE PROCESSING

4.1 Image Conversion from ROS image message to OpenCV

The first step of the process is to obtain ROS images being published by the robot‟s camera and then

convert them to OpenCV type images so that we can easily manipulate the images. In the Brown ROS

Package, the node that publishes camera images is called gscam. A ROS node was written to subscribe

to these streaming images. While gscam runs, our new node subscribes to the images being published

and then converts them to the OpenCV IplImage (Intel „Image Processing Library‟ Image) format

using CvBridge. An image in this format can then be saved or manipulated as wished.

3

4.2 Getting and Saving Ball Images

Images of the ball are needed for our experiment and such images are to be used as seen by the robot as

it drives towards the ball. Two nodes were to run side-by-side – (i) drive towards the ball; and (ii) save

camera images to the computer. The concurrency was achieved by creating a launch file that contains

the two nodes and their dependencies.

With the camera mounted on the Create and a soccer ball placed in its view, the Create is set to drive

towards the ball while images of the ball, as seen by the robot, are saved onto the Asus laptop. The

images were set to be saved in the order of pic1.png, pic2.png, etc.

4.3 Obtaining Ball Information from Saved Images

With a database of over 200 images, the size and location of the ball needed to be obtained and this

involves recording the radius of the ball and the position of its center in each image. To do this, a new

node was created which uses HighGUI (High Level Graphical User Interface), the OpenCV GUI that

enables a user to interact with an image using the keyboard or a mouse. Using this node, the user

circumscribes the ball in an image with a circle by dragging a circle across the ball.

4.4 Ball Detection

The two methods that were attempted are Hough Transforms and Template Matching.

4.4.1 Hough Transforms

Hough Transform is a feature extraction technique used in image analysis, computer vision, and digital

image processing. The purpose of the technique is to find imperfect instances of objects within a

Fig. 1: Using the

mouse, a circle is

dragged over the ball

starting from any point

on the circumference.

The radius and center of

this circle can then be

saved in a text file by

hitting a key.

The newly created text

file is a record of file

names, ball center and

radius.

The node also contains

certain shortcuts to load

next or previous

images, delete any

undesired circle and

save current circle

information. This

exercise was carried out

for all the ball images in

the database.

1 2

3 4

4

certain class of shapes by a voting procedure.
[3]

 An OpenCV function called cvHoughCircle is used to

detect all circles in an image. The reason why this method is being used is because the ball is presumed

to be a circle on the 2-D image.

For the cvHoughCircle to work correctly, the image has be to converted to grayscale and then a Canny

Edge detector is used to convert the image into a format that makes the circles in the image more

obvious to the cvHoughCircle method. A function called cvCanny is used to achieve this aim. The

cvCanny parameters are as follows: cvCanny(const CvArr* src, CvArr* dest, double threshold1, double threshold2,

int aperture_size=3). The function cvCanny finds the edges on the input image src and marks them in the

output image dest using the Canny algorithm. The smallest of threshold1 and threshold2 is used for edge

linking.
[4]

False positives always come up when cvHoughCircle is used. These could be reduced by varying the

threshold parameters.

Shadow Detection

According to R. Woering, the presence of a shadow underneath the ball could be used as a second test

to determine which one of the circles detected by the Hough Transform is actually a ball. The paper

suggests that if a detected circle is a real ball, there would be shadow underneath the ball.
 [5]

Based on that assumption, in this research, a section of code was developed which compares the

Fig. 2: Canny Edge Detection (on the left) makes it easier for a circle to be detected. cvCanny(src, dest, 100,

100, 3). Image on the left shows the original image after the cvHoughCircle have been used to detect the circles.

Fig. 3: The false positives were reduced by changing some of the parameters: cvCanny(src, dest, 10, 500, 3).

5

average color intensity of a rectangular area underneath the circle (where a shadow is expected to be if

it‟s a ball) with that of a rectangular area in the circle somewhere below its center.

Based on the fact that darker colors have a lower pixel value than brighter colors, this section of code

compares the average pixel values in these areas:
[Note: The formulae used in this function are the opinions of the author of this paper in an attempt to allocate proportional

rectangular areas to circles of different sizes. For the purpose of this test, the image was converted to grayscale for easy

comparison of color intensities.]

For each circle, the code compares the average color intensities of the two rectangles – top and bottom.

If the latter is smaller, then there exists a shadow underneath the circle and that qualifies it to be a ball.

Fig. 4: Image shows the two rectangular areas

to be compared for each circle. If the lower

rectangle has a darker color, then there‟s a

shadow under the circle.

void detect_shadow(CvPoint c, int r1) //c – center of circle, r1 - radius

{

 //top rectangle below the center

 CvPoint p1 = cvPoint(c.x-(0.50*r1),c.y+r1-(r1/2));

 CvPoint p2 = cvPoint(c.x+(0.50*r1),c.y+r1-(r1/2)+(0.25*r1));

 int top = find_avg_pixel(p1, p2, image);

 //bottom rectangle below ball should contain shadow

 CvPoint p3 = cvPoint(c.x-(0.75*r1),c.y+r1);

 CvPoint p4 = cvPoint(c.x+(0.75*r1),c.y+r1+(0.25*r1));

 int bottom = find_avg_pixel(p3, p4,image);

 if(bottom < top)return true;

 else return false;

}

int find_avg_pixel(CvPoint p1, CvPoint p2, IplImage* img) //p1 & p2 correspond to

//the diagonal points of a rectangle. img is in grayscale (1-channel)

{

 int total_p=(p2.x-p1.x)*(p2.y-p1.y); //total no. of pixels

 int sum=0, avg_p=0;

 for(int x=p1.y; x<p2.y; x++) //loop through all pixels in the area

 {

 for(int y=p1.x; y<p2.x; y++)

 {

 CvScalar s = cvGet2D(img,x,y); //get current pixel value (intensity)

 sum += s.val[0]; //add value to sum

 }

 }

 avg_p = sum/total_p;

 return avg_p;

}

6

This was the outcome:

Further tests showed that most images still came out with many false positive circles after the shadow

detection techniques has been applied. There are two main reasons for such observation:

1. The backgrounds in these images have an uneven color. Therefore, one can detect a darker

section which is not actually a shadow.

2. The ball was not detected as a Hough Circle. The rate of success of accurately detecting a ball

as a circle (even if it includes false positives) was quite low.

Fig. 5: This shadow-detecting technique worked out fine

for this image. The false positive circle was eliminated.

Fig. 6: In this

example, the shadow

detection was not

sufficient in

eliminating all the

false positives due to

uneven background

colors.

Fig. 7: In this example,

the shadow detection

was unnecessary

because the ball was

not among the circles

detected by the Hough

Transform circle

detection technique.

All the detected circles

were false positives.

This was the case for

most test images.

7

4.4.2 Template Matching

Template Matching is a technique in digital image processing for finding small parts of an image which

matches with a template image. It can be used to detect edges in a reference image.
 [6]

The algorithm searches through the reference image to find a section that matches the template image.

For our experiment, a cropped out image of the soccer ball from an image was used as a template. This

worked fine when used to find the ball in the original image where it was cropped from. Subsequently,

when the template image size was reduced, we obtained a false positive. This suggests that template

matching gets inefficient when the scale is varied. Another method that could help combat this problem

is called SIFT (Scale-Invariant Feature Transform). Due to the limited time we had for the project, this

could not be done.

CONCLUSION & FUTURE WORK

In conclusion, the experiment shows that if the Hough Transform appropriately detects a ball as a circle

(amongst other false positives), the shadow detection technique could aid in eliminating some of the

false positives. If shadow detection has to used, future test images should be taken on backgrounds

with even colors. In this case, a shadow would be more distinct.

Also, through the process of this research, it has been observed that ball recognition will require more

than circle detection. Future research work will require techniques that involve some feature

description. Such techniques include HOG (Histogram of Oriented Gradients) and SIFT (Scale-

Invariant Feature Transform). Using the database of images of the ball and the records of its position

and size, other machine learning methods could be used to train the robot to recognize a ball in its

view.

I would like to thank the Computing Research Association for this research opportunity and Brown

University‟s RLAB (Robotics, Learning & Autonomy at Brown) for giving me the opportunity to

perform research at the lab. Through this experience, I have gained a lot of new knowledge in a very

interesting field of computer science. The skills that I have gained in ROS and OpenCV will be

relevant to my future career and graduate degree pursuit.

8

REFERENCES

[1] “ROS Wiki” <http://www.ros.org/wiki>

[2] Bradski, G., and A. Kaehler. Learning OpenCV. Sebastopol: O‟Reilly, 2008.

[3] “Hough Transform” Wikipedia. 2010. Wikimedia Foundation, Inc. 8 Aug 2010 <

<http://en.wikipedia.org/wiki/Hough_transform>

[4] OpenCV: Image Processing and Computer Vision Reference Manual. University of

Pennsylvania. <http://www.seas.upenn.edu/~bensapp/opencvdocs/ref/opencvref_cv.htm>.

[5] Design of a video processing algorithm for detection of a soccer ball with arbitrary color

pattern. R. Woering. March 2009. Technische Universiteit Eindhoven. Netherlands

<http://www.mate.tue.nl/mate/pdfs/10395.pdf>

[6] “Template Matching” Wikipedia. 2010. Wikimedia Foundation, Inc. 8 Aug 2010

< http://en.wikipedia.org/wiki/Template_matching>

