
Final Report
Cathy Tianjiao Zhang

Advisor: Prof. Amy Greenwald

Abstract

This is a draft of some sections of a bigger paper.

1 Introduction

In online advertising markets, search engines like Google and Yahoo! sell
electronic billboards to advertisers. These billboards are spaces alongside
the results of search queries where advertisers can post ads. In selling these
ad spaces, search engines seek to maximize their profits; hence, they face the
age-old question of how to price their goods.

Before the advent of the Internet, the most widespread advertising pric-
ing model was “cost-per-million-impressions” (CPM).1 This classic model,
well-suited to more traditional media such as television, newspapers, and
magazines, was adopted in 1994 by Internet content providers. Historically,
Internet CPM contracts were large (some early contracts were valued at
$30,000), and hence their negotiation was cumbersome because it necessi-
tated extensive human intervention. This was unfortunate because there is
ample opportunity for automation on the Internet.

In 1997, Overture (now Yahoo! Search Marketing) launched an innovative
framework for selling advertising space on the Internet. There were (at least)
two novel aspects of Overture’s design: (i) payment is made on a per-click
(PPC) rather than a per-impression basis, and (ii) rather than selling large
chunks of advertising space, space alongside each query is sold in an ad
auction tailored to that query. More specifically, among the three types of
players in an ad auction—the search engine, the advertisers, and the users—
here is how the dynamics proceed:

• the advertisers bid on the queries of interest to them (for example,
Canon and Nikon might both bid on “digital camera”)

• a user places a query of interest to him

1An impression is a posting of an ad to be viewed by a potential consumer.

1

• the search engine holds an auction in which the bidders are those ad-
vertisers who bid on that query

• the advertisers are ranked according to their bids (and possibly some
other factors)

• the advertisers’ ads appear alongside the search results in rank order

• the user observes the organic search results (i.e., those which are rel-
evant to the query, but not ads), as well as the paid advertisements,
and clicks on the links of interest to him

• the advertisers pay per click for any ads the user clicks on

In this dynamic environment, the search engines and the advertisers face dif-
ficult decision problems. At a minimum, the search engines must determine
click prices, as well as where to display ads (i.e., how to rank the advertisers);
the advertisers in turn must decide the maximum price they are willing to
pay per click and what queries to bid on. In some settings, the search engine
may also allow the the advertisers to submit a per-period budget: i.e., an
upper bound on what they are willing to spend each period. In this case, the
advertisers’ decision includes this additional parameter. Furthermore, this
complicates the search engine’s picture, because it then must decide not just
where to display ads, but when to display them as well.

In spite of the inherent complexities in ad auctions, Google AdWords, Ya-
hoo! Search Marketing, and Microsoft adCenter are systems through which
these search engines sell online advertising space via ad auctions. Indeed
online advertising is the chief source of revenue for these industry giants.
Nonetheless, the science of ad auctions is still not very well understood. Part
of the reason for this is that the topic is highly interdisciplinary. It incorpo-
rates aspects of marketing, game theory, computer science, optimization, etc.
Consequently, there is a growing interdisciplinary community of researchers
studying the problems that arise in this domain, as evidenced by

2 TAC AA Overview

In the TAC AA game scenario2, in which eight agents attempt to maximize
their products over the course of D days on behalf of online advertisers in

2For details, visit http://tac.eecs.umich.edu/about-the-game/

2

a simulated sponsored search domain. The TAC AA scenario consists of
90,000 simulated users who submit queries, click on ads, and convert” (i.e.,
make purchases). Each of these users has an underlying manufac-turer and
component preference which dictates which product the user will ultimately
purchase. On a given day, a user may be non-searching, searching, or trans-
acted, meaning they have made a purchase that satisfies their preferences. A
searching user may be seeking information about a product or actually shop-
ping for one. Only users that are explicitly shopping ever make purchases.

Every time a user makes a query, the publisher holds an auction that
includes all agents under their budget to determine the positioning of ads on
the screen. Although all eight agents may desire to have their ads shown, only
five ad slots are available on the page. Slots that are higher up on the page are
more likely to get clicked on by users (and hence, lead to conversions) than
lower slots. The ad ranking mechanism for TAC AA varies among hybrids
of the rank-by-bid and rank-by-revenue mechanisms, but is always revealed
to the agents at the start of each game. After a user submits a query and is
shown a page of ads by the publisher, the user’s click behavior is based on a
variant of the cascade model . The user considers the first ad, and clicks on
it with some probability, after which there is some probability that the user
will convert, meaning purchase a product from the advertiser. If the user
converts, it moves to the transacted state and does not look at any other
ads. If the user does not convert or did not click on the ad to begin with,
there is some probability that the user will continue on to the next ad.

Each day, each agent sends the following information to the publisher: For
each query, a bid representing the maximum price the advertiser is willing to
pay per click for that query; an ad type describing the degree of targeting that
will be performed in the ad; a per-query budget which specifies the maximum
amount the advertiser is willing to spend on a given query for a single day;
and an overall budget which restricts the amount that the advertiser can
spend across all queries on a given day.

Each advertiser has a capacity, which is an upper bound on the number
of sales that can be made without penalty over the last L days. As sales
go beyond this amount, subsequent users have lower and lower conversion
probabilities.

On day d, all advertisers receive reports summarizing the activity on day
d − 1. Advertisers do not receive detailed information about the bids of
their opponents. But they are told, for each query: the average position of
each agent, the ad type placed by each agent and the agent’s own number of

3

impressions, clicks, conversions, and average CPC.

3 Model-Light (i.e., Rule Based) Algorithms

3.1 ConstantPM, Slot, Click, ClickSlot

The various agents in this section is meant to provide some understanding
of the environment and some nontrivial agents for testing.

3.1.1 ConstantPM

The first attempt is to design an agent that does not lose money in the game.
Assume that the agent does not go over capacity. We can set our bid for
each query so that

cpcq = USPq ∗ pr(conv)q ∗ (1− PM). (1)

Here PM , or profit margin is a constant, representing the fixed percentage
of revenue per click the agent earns as profit. We constrain 0 < PMq < 1,
to ensure that the agent will never bid more than its true value for a query.

3.1.2 Slot

Slot attempts to stay in good slots in all auctions. We again set bids according
to equation 1, but we have a different PMq for each query.

SlotAgent adjusts PMq, and consequently bid, by these rules:

1. if slotq <= GOOD SLOT then PMq∗ = INC PM

2. if !(slotq < BAD SLOT) then PMq∗ = DEC PM

Based on empirical observation, we set GOOD SLOT = 3, BAD SLOT =
4. We do not want the bids to vary too much in two consecutive days,
since we want the agent to probe the auctions gradually. Therefore, we set
INC PM = 1.1, DEC PM = .9.

4

3.1.3 Click

Click attempts to control the number of clicks on each query. It also uses
equation 1 to determine bids. Since sales and clicks has the following rela-
tionship: sales = clicks∗pr(conv), targeting clicks is equivalent to targeting
sales. We introduce another parameter, desired sales DSq, representing the
query sales our agent wishes to get from each query.

For simplicity, we fix DSq to be the same for all queries and
∑

q DSq =
dailyCapacity. Hence, ClickAgent has the following rules:

1. if salesq > DSq then PMq∗ = INC PM

2. if salesq < DSq then PMq∗ = DEC PM

3.1.4 ClickSlot

ClickSlot combines the features of Slot and Click. It has the following four
rules to allocate capacity among all queries and place a bid to obtain desired
conversions for each query q:

1. if salesq > DSq & !(slotq < BAD SLOT) then DSq∗ = INC DS

2. if salesq < DSq & slotq <= GOOD SLOT then DSq∗ = DEC DS

3. Normalize DSq such that σDSq = dailyCapacity

4. if salesq > DSq & slotq <= GOOD SLOT then PM∗ = INC PM

5. if salesq > DSq & !(slotq < BAD SLOT) then PM∗ = DEC PM

3.2 ClickProfitC, ClickProfitS

A direct improvement of ClickSlot is to observe that it tends to define a
profitable query as the one that the agent got enough sales and was in a bad
position. A natural alternative would be to look at profit directly. There are
two possible ways to define profit: profit per sale (PPS), and profit per click
(PPC) where

PPSq = USPq −
CPCq

pr(conv)q

(2)

PPCq = USPq ∗ pr(conv)− CPCq (3)

5

We implement ClickProfitC and ClickProfitS as two agents aware of PPC
and PPS respectively. The rules for the ClickProfitC are:

1. if PPCq > avgPPC then DSq∗ = INC DS

2. if PPCq < avgPPC then DSq∗ = DEC DS

3. Normalize DSq such that
∑

q DSq = dailyCapacity

4. if salesq > DSq & slotq <= GOOD SLOT then PM∗ = INC PM

5. if salesq > DSq & !(slotq < BAD SLOT) then PM∗ = DEC PM

Here, avgPPC is defined in the following way:

avgPPC =

∑
q revenueq − costq∑

q clicksq

(4)

Substitute avgPPS for avgPPC, we get the rules for ClickProfitS. Sim-
ilarly, avgPPS can easily calculated as:

avgPPS =

∑
q revenueq − costq∑

q salesq

(5)

In the experiments, we set INC DS = 1.25, DEC DS = 0.8.
From these two agents, we notice that the rules tends to equate profit

across queries. If a query has a good profit, then by rule 1, we will increase
its DSq, and this will likely trigger rule 5, thus decreasing its profit. Likewise,
if a query has a bad profit, then by rule 2, we will decrease DSq, and this
will likely trigger rule 4, thus increasing its profit

3.3 EquateProfitC, EquateProfitS

In economic terms, profit is maximized when the marginal profit is zero.
Here, since we have a 5-day capacity constraint, for simplicity, we assume
that we use 1/5 of the total capacity everyday. Therefore, our marginal profit
does not have to be 0. Rather, we can obtain an optimal bidding strategy
by equating the marginal profit of each query. However, the real marginal
profit is undefined because the slots are discrete and thus the profit function
is likely to be discrete.

6

We can use PPC and PPS to approximate marginal profit. The advantage
of this approximation is that we can design model-light agents easily. We can
guess a common PPC (EquateProficC)/PPS (EquateProfitS) for all queries,
and set bids for each query such that:

cpcq = (USPq ∗ pr(conv))− PPC (6)

cpcq = (USPq − PPS) ∗ pr(conv) (7)

This bidding strategy also implies a way to allocate capacity across all
queries. If a query has low USPq and low pr(conv), both equation 6 and 7
will yield low expected cpc’s. Then adjust the common PPS/PPC by total
conversions:

1. if
∑

q salesq > dailyCapacity then PPC/PPS∗ = INC P

2. if
∑

q salesq < dailyCapacity then PPC/PPS∗ = DEC P

In our implementation, we set INC P = 1.1 and DEC P = .9.

3.4 PPC vs. PPS

PPC captures the profit of one additional click, while PPS captures the profit
of one additional conversion. The two approaches yield different bidding
patterns. We illustrate the difference in a query space of two queries: q1 and
q2 by comparing the difference between their desired cpc’s, denoted ∆cpc.

Scenario 1 Suppose USP1 = USP2 and pr(conv)1 6= pr(conv). Equating
PPS yields:

∆cpc = (USP − PPS) ∗∆pr(conv) (8)

While equating PPC yields:

∆cpc = USP ∗∆pr(conv) (9)

Scenario 2 Suppose USP1 6= USP2 and pr(conv)1 = pr(conv). Both
approaches yield:

∆cpc = ∆USP ∗ pr(conv) (10)

Scenario 1 shows that when two queries have the same USP, both ap-
proaches will expect a higher CPC on the query with higher conversion prob-
ability. The desired CPC’s from equating PPC has a bigger gap than from

7

equating PPS. Scenario shows that if the USP’s are different but conversion
probabilities are the same, the two approaches are the same.

Empirically, equating PPS is far better than equating PPC. Equating
PPC has a bigger fluctuation of capacity used even in a five day window.

3.5 Suboptimality

We have argued that neither equating PPS nor equating PPC is optimal
in theory, despite the fact that EquatePPS outperforms many sophisticated
agents. Here we give an insight of the suboptimality of equating PPS. For
simplicity, still consider a query space of only two queries, and we assume
that we always exhaust dailyCapacity.

The total profit gained by equating PPS is:

totalProfit = PPS ∗ (sales1 + sales2) = PPS ∗ dailyCapacity (11)

Now suppose we have another bidding strategy, such that:

cpc′1 = cpc1 + δ1

cpc′2 = cpc2 − δ2

sales′1 + sales′2 = dailyCapacity

Then, the profit of this alternative is:

totalProfit′ = [PPS − δ1

pr(conv)1

]sales′1 + [PPS +
δ2

pr(conv)2

]sales′2

= totalProfit− δ1

pr(conv)1

sales′1 +
δ2

pr(conv)2

sales′2 (12)

Therefore, the alternative is an improvement iff:

δ1

pr(conv)1

sales′1 <
δ2

pr(conv)2

sales′2 (13)

Or,
δ1clicks′1 < δ2clicks′2 (14)

Note that this analysis can be extended to more than two queries.

8

4 Model-Heavy Algorithms

4.1 Intro

Using the models described in section 5, we were able to use more sophis-
ticated bidding strategies. We formulated the ad auctions bidding problem
as a Multiple Choice Knapsack Problem (MCKP), and as an Integer Linear
Program (ILP). We evaluated both bidding strategies in the TAC AA game
and a simulated environment with perfect information.

4.2 MCKP

A Multiple Choice Knapsack Problem is when one needs to decide how to
choose one item from each of several item sets while trying to maximize ones
profit and not pick items that are heavier than the knapsack capacity. This
problem can be adapted to the ad auctions setting by letting items be bids,
item sets be queries, and the total weight that the knapsack cannot exceed
be our capacity, the value of items be profit, and the weight of items be

This problem can defined as such: let m be the number of queries, ~b the
vector of bids we are considering for each query, vil be the profit associated
with bidding the jth bid in the i query, wij be the weight (or the number of
conversions), and C be our capacity.

max
m∑

i=1

∑
j∈~b

vijxij

Given
m∑

i=1

∑
j∈~b

wijxij ≤ C

∑
j∈~b

xij = 1 1 ≤ i ≤ k

xij ∈ {0, 1} 1 ≤ i ≤ k, j ∈ ~b

We implemented two algorithms to solve the knapsack problem: an in-
cremental item algorithm and a dynamic programming solution.

9

4.3 Dynamic Progamming MCKP

Observe that C is small and discrete, we can easily solve the MCKP by
dynamic programming. Define function f(i, j) as the maximum profit of
considering queries 1 up to i fulfilling capacity j, where 0 ≤ j ≤ C.
Boundary condition:

f(0, j) = 0, ∀i ∈ {1, ...,m}
f(i, 0) = 0, ∀j ∈ {0, ..., C} (15)

Otherwise
f(i, j) = max

k∈~b
max

l<maxClick(k)
f(i− 1, j − l) + vi,k,l (16)

Here function maxClick(k) refers to the clicks given by the bid-to-click
model. vi,k,l is the profit of bid k and get l clicks in the auction for query i.

The time complexity is O(mC‖~b‖).
In order to retrieve the optimal bidding strategy, we need to remember

the bid k and conversions l we have chosen for each f(i, j).

10

