
Face Tracking and Pose Approximation

Kat Bradley
Kaylin Spitz

August 20, 2009

Abstract

Face detection and tracking systems are a common
and useful task in computer vision applications. In
this paper, we provide a survey of existing methods
of detecting and tracking faces, and then describe the
system we have created. Some experimental results
and images are included, as well as suggestions for
future work and improvements.

1 Introduction

Robust face tracking is an important topic in Com-
puter Vision and presents a variety of uses. In a large
teleimmersive system such as that at UC Berkeley,
face tracking allows the use of a higher resolution
camera on the facial area. High resolution on the
face is essential because of the importance of the face
to humans for non-verbal communication. A high-
resolution face also adds to the realism of the teleim-
mersive system, which is important because human
identity is strongly tied to the face. Knowledge of the
pose of the face can aid in analyzing human interac-
tions and communications within the teleimmersive
system, for example to detect the direction of a per-
son’s gaze. Face tracking and pose tracking can also
be used as pre-processing stages for facial recognition
tasks.

Our paper begins with a short survey of existing lit-
erature. In section 3 we discuss the assumptions used
to create the pose tracking system and provide a brief
overview of the software package used to implement
the system. We then explain in detail the implemen-
tation of our system. In section 4, we evaluate some
results from our system and offer suggestions for fur-
ther work. Section 5 concludes the paper.

2 Summary of Literature

Face detection is a topic long-studied in Computer
Vision. The haar classifier technique used in our sys-
tem was first proposed by Viola Jones [12]. Haar

classifiers use a specific image representation called an
integral image, which allows for the features to be effi-
ciently represented and classified. The AdaBoost ma-
chine learning algorithm is then applied to a database
of faces, creating a cascade structure that can be used
to quickly narrow down where in the image the face is
located. Other techniques for face detection not used
in this paper include finding roughly elliptical areas
based on color segmentation [10], texture, shape [9]
, and edges. Most systems use some combination of
these techniques to improve performance.

Face Tracking focuses on using knowledge about a
face in previous frames to produce a faster, or more
robust, face tracking system than using repeated face
detection alone. The method used in this paper was
proposed by Comaniciu, Ramesh, and Meer [4].

Once a face has been detected, it is necessary to de-
tect features in the face. This can be done either by
searching for specific facial features such as the eyes,
nose, and mouth, or by simply finding generic fea-
ture points on the face. Because our system is simply
looking for the location and pose of the face, we em-
ploy the second approach, but the first is very useful
in systems which are interested in facial recognition
or facial expressions, and could be integrated into our
system if needed. One method of special feature lo-
cation is to use feature-specific haar classifiers in a
heuristically-reduced area of the face [13], but this
suffers the same issues discussed later with facial de-
tection haar classifiers. Color segmentation has also
been used to find the eyes, nose, and mouth [10]. De-
formable templates are another well-known technique
for finding such areas [14].

One of the most well-known interest point detec-
tion algorithm is Harris Corners [5]. We initially used
these features in our system, but discovered that the
algorithm often returned points on the edge of the
face, which became occluded in subsequent frames
when the subject rotated his head. SIFT features [7]
are another type of commonly used feature detector.
The basic algorithm uses a Difference of Gaussians
(DoG) at several different scales to find image points.
It seeks to combat the edge issue found in Harris

1

by using a Hessian matrix to eliminate points found
along an edge. The algorithm also removes points
that have low contrast. Our system uses Speeded Up
Robust Features (SURF) which are similar to SIFT
features. However, SURF features are faster than
SIFT, and are more robust to various image trans-
formations [1]. Our system uses the OpenCV imple-
mentation of SURF.

Finally, head pose detection can be approached
in three basic ways: generalization from 3D points
on the face (as in our system), using heuristics and
knowledge of properties of the face, and 3D model-
ing of the face. An example of the heuristic method
is given in [6], which uses distortions in the shape
of the face to approximate pose from a monocular
view. The 3D modeling approach is utilized in [3],
which produces a pose estimation suitable for use in
3D animation.

3 Approach

3.1 Assumptions

Our goal is to detect and track the pose of a human
face through stereo video. We assume that there is
only a single face in the initial frame of the image.
The system could be easily adapted to track multi-
ple faces in parallel, but we have not implemented
this functionality. When initally presented with sev-
eral faces, the system will choose the largest one. We
also assume that the face begins the image sequence
mostly frontal, and that it remains in similar light-
ing throughout the image sequence. The face needs
to be large enough in the image that distinct points
can be found. The system was tested on images at
approximately 150x150 px resolution, but should be
able to handle larger faces. However, exceptionally
large faces may hinder performance.

The images provided to our system must be rec-
tified beforehand, meaning that the right and left
image have been projected into a common image
plane. Our system must know certain information
from the rectification process to function properly,
including the intrinsic matrix, the baseline, and the
focal length [8].

3.2 Software Package Used

Our system relies on Intel’s OpenCV, a free open
source C library of functions for vision research. Ver-
sion 1.1 or later is needed to compile the source.
OpenCV provides low-level functions, such as ma-
trix and image structs, as well as high-level functions

implementing many vision algorithms, such as facial
detection, tracking, and point detection [2].

3.3 Overall system design

The overall layout of our detection system. A face is
detected in the left-hand image, using a Haar classi-
fier. Then, feature points in the face are detected us-
ing SURF. The feature points are matched to points
in the right image using optical flow, and their 3D po-
sition is computed. A plane is fit to those 3D points,
and the normal of the plane is the pose.

The overall layout of our tracking system. A face
is tracked in the left-hand image, using knowledge
about its previous position and the target color, with
a mean-shift procedure. Then, feature points in the
face are tracked using optical flow. The features are
filtered, removing those not on the face and those
that tracked poorly. The filtering process also recog-
nizes if the tracked features and tracked face location
disagree, allowing the system to re-detect instead of
using poor tracking. Finally, as before, the feature
points are matched to points in the right image us-
ing optical flow, their 3D position is computed, and
a planar regression is performed.

3.4 Face Detection

A Haar classifier was used to detect the face, as
implemented in OpenCV. The classifier is based off
of Viola-Jones’ original algorithm [12], and uses the
cascades provided with OpenCV. This classifier has
a tendency to identify multiple faces. Therefore, a

2

heuristic is needed to decide which detected faces are
correct. The system as presented simply finds the
largest face in the image. A more robust approach is
to find the face in both images, and match the two
results which are most similar in location and area.
However, the face detection is the slowest element of
the system, and detecting the face in both images
significantly reduced performance. In our tests, sim-
ply choosing the largest face seems to work well; in
other applications, especially when one is attempting
to track multiple faces, a more sophisticated heuristic
will be needed.

3.5 Face Tracking

The face tracking component is based off Comani-
ciu, Ramesh, and Meer’s Kernel-Based Object Track-
ing [4]. Colors are grouped into 128 ‘bins’. The target
distribution, assumed to be the correct color of the
face, is the histogram of the colors found in the orig-
inal detected face. In each frame, the previous loca-
tion of the face is used as an initial position, and the
position is iteratively improved by moving towards
areas more similar to the target distribution.

The original system has a variety of issues. If the
lighting changes, the color of the face changes and the
system cannot track it. If an item of similar color is
placed in front of the face, the system may misiden-
tify the item as the face and track it instead of the
face. When the face turns, its color often changes,
especially as shadows change. This paper will refer
to these errors as ”consistent errors”, because it is
easy to identify cases where they may occur, and be-
cause they tend to occur in both images when track-
ing is performed in stereo. In addition, sometimes
the tracker misidentifies other areas as the face when
there are no large lighting or angle changes. These
areas often do not appear, to a human, to be a simi-
lar color as the face. Furthermore, these errors tend
to occur in only a single image when tracking is per-
formed in stereo. Thus, this paper refers to these
errors as ”inconsistent errors”.

Improvements were added to the system to reduce
consistent errors and remove most inconsistent errors.
The face tracking is performed on both sides of stereo
images (left and right). Each frame, the face track-
ing is performed in two color spaces, RGB and HSV
and the two tracked faces with the most similar move-
ment are chosen. Because the inconsistent errors usu-
ally occur in only one frame, by correlating the two
frames, the inconsistent errors are almost removed.
Furthermore, using two color spaces reduces consis-
tent errors, which often occur ony in one color space,
or occur more dramatically in one color space than

in another.
However, tracking two sides in two color spaces

with each of three sizes presents a performance prob-
lem. While the original mean-shift procedure is fast,
it is not fast enough to be performed six times (as op-
posed to the original three times) per pair of frames in
real-time. The larger the face is, the longer the orig-
inal mean-shit procedure takes. Therefore, to reduce
runtime, sampling was used. A 20x20 grid of evenly
distributed points on the face is used for the mean-
shift procedure instead of all points. Experimentally,
using a sample of points instead of all points appears
to produce similar results, although it increases the
inconsistent noise. However, as the correlation be-
tween frames removes most inconsistent noise, this is
a small issue.

3.6 Feature Detection, Tracking, and
Filtering

The initial points to track are detected in the facial
area of the left image using Speeded Up Robust Fea-
tures (SURF). SURF finds key points in the image as
described previously.

Once the SURF features have been detected in the
initial frame, they are tracked in subsequent frames
using Lucas-Kanade optical flow. The optical flow
method is provided in OpenCV. The algorithm looks
for sparse points locally, assuming spatial and tem-
poral coherence between frames. It uses a pyra-
mid scheme, which searches in a window that slowly
shrinks in size, moving from less to more detail. This
ability to track locals points in a global context gives
the Lucas-Kanade method its robustness [2].

The movement of each feature point within the
face (as tracked using the face tracking component) is
computed, and the movements form two distributions
(in x and y). Points are rejected if their movement is
far from the mean (more than three standard devia-
tions in either direction) or if they are far from the
face. Points near the face but not in it are not auto-
matically rejected, as the face tracking is imperfect.

If the majority of points are not in the detected
face, re-detection of both face and feature points is
performed (as clearly one of them is incorrect). If the
number of points after filtering drops too low (less
than 15), the feature points are re-detected.

3.7 Feature Correspondance

Using the points found in the left image, correspon-
dences are found between the left and right images
in a frame using the same Lucas-Kanade optical flow
method that was previously used for feature tracking.

3

This is an unconventional use of optical flow, but it
works well for our purposes because of the pyramid
scheme previously described. The window must be
slightly larger than when used to simply track the
points. This is in anticipation of the larger dispar-
ity between the left and right images. With no other
modifications, optical flow provides a robust estimate
of the correspondences between the two images.

The OpenCV optical flow method provides an error
estimate for each point match; we have screened the
point matches according to a threshold to reduce the
number of false points provided to the pose detection
algorithm.

3.8 Pose Approximation

Using the correspondence information, a disparity
(the distance between x coordinates in each image)
is calculated for each valid point. Next, we use the
disparity d to calculate the depth coordinate Z of
the point in 3D space. This is done using the simple
equation Z = fb/d, where f is the focal length and b
is the baseline.

From [8], we have the following relation between
image and world coordinate systems, where K = sx sθ ox

0 sy oy
0 0 1

 is the intrinsic matrix.

λ

 x′

y′

1

 = K

 f 0 0
0 f 0
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

X
Y
Z
1

From this, we derive the following explicit relations
between X and Y (the 3D world coordinates) and x′

and y′ (the image coordinates):

x′ =
Xfsx + Y fsθ + Zox

Z

y′ =
Y fsy + Zoy

Z

X =
Zx′ − Y fsθ − Zox

fsx

Y =
Zy′ − Zoy

fsy
.

Once the points’ location in 3D space has been es-
tablished, the next step is to regress the points to a
plane in which the face is likely to be located. This
is done using a series of matrix operations from [11].
The normal vector to the regressed plane indicates
the pose of the face in 3D space. The pose can then be

drawn on the image by simply choosing two points in
3D space which are on the normal vector, converting
those points to image points according to the above
equations, and drawing a line between them. This
is visually more useful when a point in the center of
the face is chosen as a start point. The vector used
should also be a unit vector in the 3D world, so that
the length of the line drawn in the image plane helps
visually convey the pose.

3.9 Kalman Filter

It is worth noting significant unsuccessful efforts not
integrated in the final system. As the mean-shift
procedure is highly dependent on color, an alternate
method, utilizing feature points and a Kalman filter,
was attempted.

In an initial frame, face detection, feature detec-
tion, and pose approximation are performed as be-
fore. Thus, we have an estimate for the position and
pose of the face:

x, y, z, θ, φ, ψ,

where x, y, z are its position in absolute space, and
θ, φ, ψ are its rotation along the x, y, z axes, respec-
tively.
Likewise, we have an estimate for the position of each
feature point (from the 3D reconstruction) and so we
can compute its offset from the face on each of the
x, y, z axes. These offsets are

oi,x, oi,y, oi,z

for the ith point.
Assuming the face to be rigid (most feature points are
on areas that do not move much with the face, such
as eye corners and nostrils), the apparent positions
of the feature points are related to pose (including
position) of the head. If the apparent position of a
feature point i is ai,x, ai,y (in a single frame), then we
expect:

ai,x = 1/z(x+ oi,x cos(φ) + oi,x cos(ψ)
+ oi,y sin(ψ) + oi,z sin(φ))

ai,y = 1/z(y + oi,y cos(θ) + oi,y cos(ψ)
+ oi,x sin(ψ) + oi,z sin(θ)).

This assumes x, y, z are measured in arbitrary units
(depending on how ai,y is measured). However, they
can easily be converted to other units by a normaliza-
tion constant. Knowing x, y, z, θ, φ, ψ in the previous
frame, we can approximate the positions of each point
a′i, x in the current frame as a more linear function of

4

x′, y′, z′, θ′, φ′, ψ′ (the position in the current frame):

a′
i,x = 1/z′(x′ + oi,x(cos(φ) + cos′(φ)(φ′ − φ)

+ oi,x(cos(ψ) + cos′(ψ)(ψ′ − ψ))
+ oi,y(sin(ψ) + sin′(ψ)(ψ′ − ψ))
+ oi,z(sin(φ) + sin′(φ)(φ′ − φ)))

a′
i,y = 1/z′(y′ + oi,y(cos(θ) + cos′(θ)(θ′ − θ))

+ oi,y(cos(ψ) + cos′(ψ)(ψ′ − ψ))
+ oi,x(sin(ψ) + sin′(ψ)(ψ′ − ψ))
+ oi,z(sin(θ) + sin′(θ)(θ′ − θ)))

By inspection, we see that, except for the 1/z′ term,
this is a linear system in x′, y′, θ′, φ′, ψ′, taking the
offsets(o terms), as well as the position in the previ-
ous frame (x, y, z, θ, φ, ψ) as constants. We can thus
write these equations as:

a′
i,x = 1/z′(x′ + ci,x,φφ

′ + ci,x,ψψ
′ + ci,x,1)

a′
i,y = 1/z′(y′ + ci,y,θθ

′ + cix,ψψ
′ + ci,y,1),

for some constants c (acquired through algebraic ma-
nipulation on the earlier linearized equations).
Furthermore, 1/z′ can be approximated without the
use of such equations by considering the average dis-
tance between feature points (which will scale with
1/z . Such an estimate is imperfect, but allows us to
determine 1/z′ and treat it as a constant, reducing
our equations to:

a′
i,x = di,x,xx+ di,x,φφ

′ + di,x,ψψ
′ + bi,x

a′
i,y = di,y,yy + di,y,θθ

′ + dix,ψψ
′ + bi,y,

where the d’s are simply constants. Thus, our obser-
vations can be related as a linear function of the pose.
Finally, we manipulate our equation to find:

a′
i,x − bi,x = di,x,xx

′ + di,x,φφ
′ + di,x,ψψ

′

a′
i,y − bi,y = di,x,yy

′ + di,y,θθ
′ + dix,ψψ

′,

so the left side is a matrix multiplication on the pose:

A = Dv,

where

A =

a′
0,x − b0,x
a′
0,y − b1,y
a′
1,x − b0,x
a′
1,y − b1,y

.

.

.

D =

d0,x,x 0 0 0 d0,x,φ d0,x,ψ

0 d0,y,y 0 d0,y,θ 0 d0,y,ψ

d1,x,x 0 0 0 d1,x,φ d1,x,ψ

0 d1,y,y 0 d1,y,θ 0 d1,y,ψ

...

v =

x
y
z
θ
φ
ψ

As the constants vary over time, the matrices need

to be updated at each time step.
The transition matrix from one hidden state to the
next is simply the identity.
Unfortunately, no working implementation of this
technique was completed.

4 Results

The facial detection is fairly accurate for frontal faces,
but not very accurate for non-frontal (such as profile)
faces. When no face is detected, it simply tries the
next frame, and often within a couple frames the face
can be detected.

The facial tracking is accurate when the lighting
on the face does not change. However, lighting on
the face may change for a variety of reasons, such
as movement through a non-uniform space, shadows,
and even tilting the head towards or away from the
light. Nevertheless, in most of our experiments, the
lighting stayed constant enough for effective tracking.

The feature detection consistently finds enough fea-
tures for pose approximation. However, many (about
40%) of the detected features do not track well. These
features are consistently removed through filtering,
leaving features that track well. Likewise, some of
the features do not correspond well (between the two
frames), often because of occlusions. Again, the filter-
ing seems to remove most incorrect correspondences,
allowing for accurate 3D reconstructions. An exam-
ple of detected features and the results of filtering is
shown below.

5

Figure 1: A computed facial location after detecting and
some tracking.

Figure 2: Initially detected points. Those in blue re-
mained after tracking; those in pink were filtered out.

Note that the features filtered out tend to be in
homogenous regions (such as the cheeks) or off the
face. The remaining features are well-located and on
the face.

Pose detection as presented is highly dependent
upon the points that are found and matched previ-
ously in the algorithm. If the points are not well-
distributed across the face, or points which are not
actually on the face are used, the results are poor, so
it is important that the face and feature tracking are
highly accurate. Also, regressing all the points to a
plane treats the face as though it is a rigid object,
which may also hinder robustness, especially when
there are occlusions or the subject is wearing objects
on the face such as glasses. Despite these limitations,
there was an acceptable degree of accuracy for pose
detection.

Currently, the system takes approximately 350 mil-
liseconds for initial face detection and 40 millisec-

Figure 3: Sample pose detections, shown by a unit vec-
tor.

onds for face tracking on a 3.06 GHz machine. Ap-
proximately 130 milliseconds are spent detecting the
SURF features; 20 milliseconds are spent tracking
them, and 25 milliseconds are used finding the cor-
respondences. Thus, in a typical frame where the
face and features are tracked, the total time spent is
approximately 85 milliseconds. It is thus potentially
suitable for real-time tracking, especially if certain
optimizations such as parallelizing the face tracking
code were made.

Redetection of the face is by far the slowest part of
the process, and therefore should be done as sparingly
as possible. Ideally, redetection should happen every
10-20 frames to ensure accuracy, but for real time, it
is best to only redetect when the tracking has gone
significantly awry. Redetecting the SURF features
can happen more often and still maintain real-time
speeds.

4.1 Future Work

As previously mentioned, the most time-intensive
component of our system is the detection of the ini-
tial face. Faster, more robust methods of detecting
the initial face location should be considered in any
future work. When redetection of the face is neces-
sary, it may be possible to use the incorrect location
and size to heuristically reduce the search space for
the new location. The image size can also be reduced
before attempting face detection, which can signifi-
cantly reduce runtime.

More interaction between steps in the system may
improve robustness. For example, facial points could
be fed back into the face tracking and detection to
enhance the overall estimate of face location. The
pose detection may also be used to improve the track-
ing in subsequent frames; a Markov model predict-
ing the movement of the face may further enhance
performance. Finally, the use of a feature detection
scheme that searches out definite points such as the
eyes, nose, and mouth is recommended if this system
is to be expanded for work in facial recognition or

6

human computer interaction.

5 Conclusions

In this paper, we have presented a stereo vision sys-
tem which detects, tracks, and estimates the 3D pose
of human faces. This system is adaptable for many
uses, including focusing a higher resolution camera on
the face in the context of a large tele-immersive sys-
tem. Other applications of our work include analysis
of human facial expression and movement.

The authors have learned much from this work
about computer vision and the research process in
general. We would like to thank the members of the
tele-immersion lab at UC Berkeley, especially prof
Ruzena Bajcsy, Dr Gregorij Kurillo, and Zeyu Li for
their guidance and assistance. In addition, we would
like to thank the CRA-W and the DREU program
for funding and support.

References

[1] Herbert Bay, Tinne Tuytelaars, and Luc
Van Gool. Surf: Speeded-up robust features. In
9th European Conference on Computer Vision.

[2] Gary Bradski and Adrian Kaehler. Learning
OpenCV. O’Reilly, 2008.

[3] Junchul Chun, Ohryun Kwon, and Peom Park.
A robust 3d face pose estimation and facial ex-
pression control for vision-based animation. Ad-
vances in Multimedia Modeling, 2006.

[4] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-
based object tracking. Pattern Analysis and
Machine Intelligence, IEEE Transactions on,
25(5):564–577, May 2003.

[5] C. Harris and M. Stephens. A combined corner
and edge detection. In Proceedings of The Fourth
Alvey Vision Conference, pages 147–151, 1988.

[6] Qiang Ji. 3d face pose estimation and tracking
from a monocular camera. Image and Vision
Computing, 20(7):499 – 511, 2002.

[7] David Lowe. Object recognition from local scale-
invariant features. In Computer Vision, 1999.
The Proceedings of the Seventh IEEE Interna-
tional Conference on, pages 1150–1157, 1999.

[8] Yi Ma, Stefano Soatto, Jana Kosecka, and
S. Shankar Sastry. An Invitation to 3-D Vision:
From Images to Geometric Models. Springer,
2004.

[9] Eli Saber and A. Murat Tekalp. Frontal-view
face detection and facial feature extraction using
color, shape, and symmetry based cost functions.
Pattern Recogn. Lett., 19(8):669–680, 1998.

[10] Karin Sobottka and Ioannis Pitas. A novel
method for automatic face segmentation, facial
feature extraction and tracking. Signal Process-
ing: Image Communication.

[11] Dan Teague, Bob Stephenson, Chris Olsen, and
Gloria Barrett. Regression analysis. Notes from
the NCSSM Statistics Leadership Institute, 1999.

[12] Paul Viola and Michael Jones. Rapid object de-
tection using a boosted cascade of simple fea-
tures. In IEEE Computer Society Conference
On Computer Vision and Pattern Recognition,
pages 511–518, 2001.

[13] Phillip Ian Wilson and John Fernandez. Facial
feature detection using haar classifiers. J. Com-
put. Small Coll., 21(4):127–133, 2006.

[14] Alan L. Yuille, Peter W. Hallinan, and David S.
Cohen. Feature extraction from faces using de-
formable templates. Int. J. Comput. Vision,
8(2):99–111, 1992.

7

