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1. Project Description

Molecular  Dynamics  (MD)  simulations  are  an  excellent  target  for  GPU acceleration  since  most 
aspects of MD algorithms are easily parallelizable. Enhancing the performance of MD can allow the 
simulation of  both  larger  time scales  and larger  length  scales.  Figure  1 illustrates  some types  of 
calculations that are possible at differing length and time scales [1]. Ideally, simulations would be 
able to attain all-atom resolution on time scales of microseconds to milliseconds. With coarse-grained 
resolution, even longer time scales approaching seconds may be possible. However, the ultimate goal 
of any simulation is atomistic resolution of very large length scales over very long time scales, i.e., 
essentially  continuum physics with atomic detail.  The utilization of parallel  architectures such as 
GPUs constitutes a step towards this goal.

In the past year,  the Global Computing Lab at 
the  University  of  Delaware  has  designed  and 
implemented  a  CUDA implementation  of  MD 
code modeled after  CHARMM [2] in terms of 
the  force  field  functional  forms,  neighbor  list 
structure,  and  measurement  units.  Our  GPU-
CHARMM  code  includes  bonded  and 
nonbonded  atom  interactions.  Results  of  MD 
simulations with our GPU-CHARMM show that 
several  floating-point  operations  (i.e.,  division 
and  sqrt)  are  not  IEEE compliant  and  lack  in 
accuracy  when  executed  on  single  precision 
GPUs.  Our  results  are  also  supported  by  the 
CUDA documentation  [3].  At  the  same  time, 
such compliance and accuracy are provided on 
double  precision  GPUs  but  at  a  too  high 
performance  cost.  Table  1  shows  this  cost  in 
terms of MD steps/sec for a NaI solution system 
(the higher, the better). The total execution time 
for  10  million  MD  steps  (10  nanoseconds 
simulation  time)  was used  to  obtain  this  data. 
The  performance  of  the  same  simulations  on 

double precision GPUs is 8 times slower and comparable to CPU performance [4, 5]. Another aspect 
that  affects  performance  on  double  precision  GPUs  is  the  fact  that  performance  optimizations 
available for single precision GPUs, e.g.,  using the  texture unit as a means of improving random 
access  performance  for  table  lookups,  are  not  available  in  double  precision  devices  yet.  So  for 
example, for benefiting from the texture unit on double precision GPUs, turnaround solutions are 
needed in which floating-point numbers are embedded in C union types.

An  efficiently  implemented  arbitrary-precision  mathematical  library  for  GPUs  can  provide  the 
scientist with a solution to this problem because it would allow the execution of accurate floating-
point operations on faster single precision GPUs. 

Figure 1: An illustration of some of the types of 
theoretical physical calculations that are possible 
at  varying  time  and  length  scales  (Figure 
reproduced from Reference [1]).



This proposal has two goals:

• Implement an arbitrary precision mathematical library for floating point operations on GPUs.

• Study the library’s accuracy and efficiency trade-offs with real MD applications using our 
GPU-CHARMM code.

Arbitrary  precision  mathematical  libraries  are 
not  new.  In  the  70s’ and  80s’,  several  open-
source libraries for CPUs were developed. The 
lessons  learned  in  implementing  the  CPU 
libraries in the past will help us in delivering an 
open-source  arbitrary  precision  mathematical 
library  to  the  community  of  scientists  using 
GPUs.

The rest of this research proposal is organized as 
follow:   Section  2 presents  preliminary  results 
motivating  the  need  for  an  arbitrary  precision 

library and presenting the knowledge built  in the past  year  by the Global  Computing Lab at  the 
University of Delaware. Section 3 describes the research goals for this summer internship. Section 4 
presents the summer timeline and the starting bibliography. Finally, Section 5 presents the equipment 
available to the group members for this project.

2. Project Methodology

2.1 GPU-CHARMM Code for MD Simulations

The GPU-CHARMM code implemented at the Global Computing Lab emulates the CHARMM code 
with its force field and parameter settings [4, 5].  The code includes both bonded and nonbonded 
interactions. Bond, angle, and dihedral potentials are computed using a similar list approach. For the 
bonds, each thread iterates through all atoms bonded to an atom  i  and accumulates the total bond 
forces. For the angles and dihedrals, each thread iterates through the atoms that are involved in an 
angle or a dihedral with  i and calculates the appropriate interactions. Unlike the nonbonded lists, 
these lists are constructed once on the CPU at the beginning of the simulation, copied to the GPU, and 
never need to be modified.

Nonbonded interactions (Lennard-Jones and electrostatics) are calculated by a single kernel in which 
each thread iterates through the neighbor list for a single atom  i and accumulates the interactions 
between atom i and all its neighbor list entries. The texture cache is used for reading the coordinates 
of the neighbor atoms since they are not contiguous in memory. Shifted force forms are used for the 
electrostatic and Lennard-Jones potentials so that both energies and forces go smoothly to zero at the 
cutoff  rcut.  The  Verlet  list  approach  [6]  is  used  to  construct  the  neighbor  list.  Briefly,  a  list  is 
constructed for each atom containing all atoms within a cutoff rlist, where rlist > rcut. This way, the list 
only needs updating whenever an atom has moved more than 0.5( rlist - rcut). The list is constructed on 
the GPU as follows. Each thread checks the distance between an atom i and all other atoms, and adds 
to  i's neighbor list those atoms that are within  rlist of  i. This process is accelerated by having each 
block take advantage of shared memory using a previously described tiling approach [7].

2.2 Study of Constant Energy MD Simulations

NVE dynamics  is the original method of molecular dynamics, corresponding to the microcanonical 
ensemble  of  statistical  mechanics  [8].   NVE  MD  simulations  are  also  called  constant  energy 

GPU-CHARMM MD step/sec
GeForce 9800 GX2 260.88
Quadro FX 5600 246.37

GTX 280 (double precision) 31.79

Table  1: Performance  of  our  GPU-CHARMM 
code for the NaI solution system compared among 
different  GPUs.  The total  execution time for  10 
million  MD  steps  (10  nanoseconds  simulation 
time) was used to obtain this data.



simulations because they are performed in a closed environment with constant  number of  atoms, 
constant volume, and constant energy.

We observed a major problem with the total  energy of NVE MD simulations executed on single 
precision  GPUs.  The  total  energy,  which  should  remain  constant  as  the  simulation  evolves, 
systematically diverged from its initial value, converging toward zero both for negative and positive 
energies. This phenomenon is not observed on double precision GPUs. To study the phenomenon and 
isolate  the  causes,  we  considered  different  GPUs  and  MD  parameters.  Table  2  summarizes  the 
characteristics of the GPUs considered in this study: single-precision GPUs with CUDA 1.1 - without 
round-to-nearest-even  rounding (SPO);  single-precision  GPUs  with  CUDA 2.0  -  with  round-to-
nearest-even rounding for *, + and - (SPW); and double precision GPUs with CUDA 2.0 (DPW). The 
MD simulations are performed with different parameters summarized in Table 3.

GPU characterization
Single precision, CUDA 1.1 (SPO) All floating-point operations do not uses round-to-nearest-

even rounding and are not IEEE compliant
Single precision, CUDA 2.0 (SPW) +/- and *  only use round-to-nearest-even rounding and are 

IEEE compliant
Double precision (DPW) All  floating-point  operations  use  round-to-nearest-even 

rounding and are IEEE compliant
§
Table 2: Type of GPUs

MD simulation characterization
Step size (fs) 0.05, 0.10, 0.25, 0.50, 0.80, 1.00, 1.60, 2.00
Initial system configuration Different random seeds, e.g., 100, 768.5, 1200
Total MD steps 80K, 2,000K

Table 3: MD parameter setting

We applied an n-factor analysis: we took into consideration one single parameter in Table 3 at a time. 
To study the effect of the step size, we ran the same MD simulation with the same number of steps but 
different  step sizes on a single precision GPU and CUDA 2.0 (SPW).  Figure 2a shows the total 
energy over 80K steps with step size equal to 0.05fs (red line), 0.10 fs (green line), and 0.25fs (blue 
line). Figure 2.b zooms in on Figure 2.a and shows that the deviation from the constant energy is also 
present for larger step sizes than 0.05fs, i.e., 0.10fs, but is not visible with a step size of 0.25fs or 
larger. Overall, Figure 2 shows that, even for short simulated intervals, MD simulations with small 
step sizes present significant total energy drifting.

The random seed in MD simulations affects the initial system configuration. To study the potential 
impact of the initial system configuration, we ran the same MD simulation with different seeds on a 
single precision GPU and CUDA 2.0 (SPW). Figure 4 shows the total energy for two of the three 
seeds in  Table  3.  In  all  cases  the simulation shows the same energy drifting.  Therefore,  we can 
conclude that the initial configuration of the MD system is not responsible for the drift.

Figure 4 shows that  longer simulations present energy drift  even for larger step sizes (2fs) when 
executed on a single precision GPU with CUDA 1.1 (red line) and CUDA 2.0 (green line) but have 
constant total energy when executed on a double precision GPU. The MD simulation in Figure 4 
consists of 20,000K MD steps (40ns). The energy drift was not visible for the same MD step size 
when the same simulation was executed over a shorter simulated time of 80K MD steps. The figure 



also provides us with a first indication of the cause of the energy drifting. On single precision GPUs 
with  CUDA  1.1,  all  the  floating-point  operations  including  multiplications,  additions,  and 
subtractions do not use the  round-to-nearest-even rounding and the drifting is the largest observed. 
With CUDA 2.0 the latter three operations use the  round-to-nearest-even rounding but none of the 
other operations  do (in particular  division and sqrt);  a  slightly smaller  drift  is  still  observed.  On 
double precision GPUs all the operations are IEEE complaint and no drift is measured. This suggests 
that the cause of the energy drift must be related to the way the IEEE floating-point operations are 
performed on the single precision GPUs.

(a) (b)
Figure 2: Effect of different step size on divergence of total energy in MD simulations

Figure  3: Effect  of  different  random  seeds  on 
divergence of total energy in MD simulations

Figure 4: Long MD simulation on single prec. 
GPUs  (red  and  green)  and  double  prec.  GPU 
(blue)

The reviewer  could argue that  the energy deviations are due to an incorrect  MD algorithm. It  is 
known that, to be correct, the fluctuations in total energy of MD simulations should be proportional to 
the time step size. To evaluate the correctness of the MD code, we considered the constant energy 
simulation and we plot the standard deviation of the total energy as a function of time step size for 
short simulations of 50,000 steps. 

Figure 6 shows the standard deviation of total energy values for different step sizes (0.05fs, 0.1fs, 
0.25fs, 0.5fs, 0.8fs, 1fs, 1.6fs and 2fs) on the three GPUs in Table 2. We know from the results in 
Figure 2 that for a short simulation, the energy drifts only for small step sizes. From Figure 5 we 
know that the drift is larger on SPO. SPO and SPW show a different behavior from DPW for step 
sizes less than 0.2fs (x-axis equal to 20). This difference is more accentuated for SPO than SPW.



2.3  Reproducing  Drift  in  Synthetic 
Code

Since  MD  codes  are  normally  very 
complex, we designed and implemented 
a suite of synthetic programs that show 
similar  drift  as  our  GPU-CHARMM 
code.  Because  they  are  less 
sophisticated,  the  synthetic  programs 
allow us to search for effective solutions 
in a controlled testing environment.  The 
programs  consist  of  the  iterative 
execution  of  an  operation  followed  by 
its inverse using random numbers, e.g., 
the randomly generated operand x (array 
of operands X) is iteratively squared and 
then  square-rooted.  The  randomly 
generated operand x (array of numbers 
X) is  taken to  be  nonnegative  and are 

randomly chosen within an interval whose maximum value is defined by a seed. Figure 7.a shows the 
general program framework and Figure 7.b shows an example of a synthetic program. The random 
generated values emulate fluctuation in MD simulations.

General code:
 

x = (+/-) rand (seed)
loop
     x = op-1 (op (x))
     print x
end loop
                                (a)

Example of code with op = sq and op-1 = sqrt
(i.e., sq(x) = x2 = x*x)

x = rand (seed)
loop
     x = sqrt(x * x) 
     print x
end loop
                                    (b)

Figure 7: General framework of the suite program (a) and one simple example with * and sqrt (b)

Our suite of synthetic programs includes these operations: division, multiplication with reciprocal, 
and sqrt. The programs can be executed on both CPUs and GPUs. Table 4 summarizes the equations 
considered in our first version of the suite, the values for x and y used for our testing, and the number 
of iterations per loop.

Equation x values y values (range) Num. iterations
NEED TO UPDATE 
WITH SQRT

NEED TO 
UPDATE 
WITH SQRT

NEED TO UPDATE 
WITH SQRT

NEED  TO 
UPDATE  WITH 
SQRT

Table 4: Equations and operands used for studying the drifting in synthetic programs

Figure 6: Standard deviation of total energy values in MD 
simulations with different step sizes and types of GPU



When  running  the  programs  on  single  precision  GPUs  using  CUDA 2.0  with  different  operand 
settings, we always observe a drift from the CPU results that can converge toward 0, +Inf, or –Inf 
based on the value signs (positive or negative) and value ranges (close to zero or very large values). 
Figures 8-10 shows three examples of our testing. Figure 8 [MAKE THIS FIGURE] presents results 
with sqrt as the main operation in the body of the loop and multiple threads contributing to the final 
constant positive value x, which is the sum of an array of values xi. Overall we observe that the x 
values do not remain constant (as expected) but drift from their original values depending on the sign 
of x, the range of the randomly generated numbers y used in the body of the loops, and the number of 
loop iterations.

3. Goals for Summer Internship

The GCLab group has been working on a CPU version of an arbitrary precision division based on a 
variable-length array of digits. For the summer, another student in the group will implement a first 
version of this division for GPUs. I will work on the implementation of a software sqrt for CPU and 
GPU. Under the supervision of Dr. Taufer, we will address hardware optimizations for my code that 
are GPU dependent, e.g., use of shared memory for more efficient memory access of data. Therefore, 
the goals for the summer are to learn CUDA programming, and then convert my CPU sqrt function to 
work for the GPU efficiently. A testing component will conclude my summer internship. The testing 
will include two main aspects: accuracy and performance. First we will make sure that the software 
sqrt function, contrary to the default sqrt currently available on the GPU, does not cause divergence in 
GPU simulations.  Then,  we will  measure  the  cost  of  the  software  sqrt  in terms of  performance. 
Ideally we would like to keep the cost of our function below 10%.

4. Timeline and Starting Bibliography

The detailed plan of the summer internship is as follows:
Week 1: Work on a web page for the research; learn about the other members in the lab
Week 2: Run tests on CPU and GPU to confirm the presence of divergences with sqrt
Week 2 – 4: Learn CUDA programming on the GPU
Week 5 – 7: Implement the sqrt function on CPU and GPU
Week 7:  Prepare a poster detailing the project
Week 8: Present poster, debug and optimize GPU sqrt
Week 9 – 10: Continue debugging and optimizing GPU sqrt
Week 10: Prepare and give a presentation for the group summarizing my summer experience

   Write final report of the research and the achievements.

The proposed research is supported by this related work [9-20]. During the internship, we will 
critically read and discuss this work.

5. Equipment

This project is supported by research equipment at the Global Computing Lab, led by Dr. Michela 
Taufer. The lab includes:

• A homogenous  cluster  of  three  high-end  workstations  (Dual  Quad  Core  Intel(R)  Xeon 
2.66GHz)  each  hosting  two different  types  of  GPUs:   2  Nvidia  Graphics  Card  GeForce 
9800GX2, 2 Nvidia Graphics Card GeForce GTX280, and 2 Nvidia Graphics Card Quadro 
FX5600

• A hybrid cluster composed by: 6 quad-core computing nodes, 3 Tesla S1070, each connected 
to two computing nodes,  and a front-end node for compilation and job submissions.  The 
nodes are interconnected by Infiniband and Gigiabit Ethernet.
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