
An Efficient Arbitrary Precision Mathematical Library for Accurate and Fast MD
Simulations on Single Precision GPUs –

The sqrt function

Student: Omar Padron
Supervisor: Michela Taufer

Computer and Information Sciences, University of Delaware

1. Project Description

Molecular Dynamics (MD) simulations are an excellent target for GPU acceleration since most
aspects of MD algorithms are easily parallelizable. Enhancing the performance of MD can allow the
simulation of both larger time scales and larger length scales. Figure 1 illustrates some types of
calculations that are possible at differing length and time scales [1]. Ideally, simulations would be
able to attain all-atom resolution on time scales of microseconds to milliseconds. With coarse-grained
resolution, even longer time scales approaching seconds may be possible. However, the ultimate goal
of any simulation is atomistic resolution of very large length scales over very long time scales, i.e.,
essentially continuum physics with atomic detail. The utilization of parallel architectures such as
GPUs constitutes a step towards this goal.

In the past year, the Global Computing Lab at
the University of Delaware has designed and
implemented a CUDA implementation of MD
code modeled after CHARMM [2] in terms of
the force field functional forms, neighbor list
structure, and measurement units. Our GPU-
CHARMM code includes bonded and
nonbonded atom interactions. Results of MD
simulations with our GPU-CHARMM show that
several floating-point operations (i.e., division
and sqrt) are not IEEE compliant and lack in
accuracy when executed on single precision
GPUs. Our results are also supported by the
CUDA documentation [3]. At the same time,
such compliance and accuracy are provided on
double precision GPUs but at a too high
performance cost. Table 1 shows this cost in
terms of MD steps/sec for a NaI solution system
(the higher, the better). The total execution time
for 10 million MD steps (10 nanoseconds
simulation time) was used to obtain this data.
The performance of the same simulations on

double precision GPUs is 8 times slower and comparable to CPU performance [4, 5]. Another aspect
that affects performance on double precision GPUs is the fact that performance optimizations
available for single precision GPUs, e.g., using the texture unit as a means of improving random
access performance for table lookups, are not available in double precision devices yet. So for
example, for benefiting from the texture unit on double precision GPUs, turnaround solutions are
needed in which floating-point numbers are embedded in C union types.

An efficiently implemented arbitrary-precision mathematical library for GPUs can provide the
scientist with a solution to this problem because it would allow the execution of accurate floating-
point operations on faster single precision GPUs.

Figure 1: An illustration of some of the types of
theoretical physical calculations that are possible
at varying time and length scales (Figure
reproduced from Reference [1]).

This proposal has two goals:

• Implement an arbitrary precision mathematical library for floating point operations on GPUs.

• Study the library’s accuracy and efficiency trade-offs with real MD applications using our
GPU-CHARMM code.

Arbitrary precision mathematical libraries are
not new. In the 70s’ and 80s’, several open-
source libraries for CPUs were developed. The
lessons learned in implementing the CPU
libraries in the past will help us in delivering an
open-source arbitrary precision mathematical
library to the community of scientists using
GPUs.

The rest of this research proposal is organized as
follow: Section 2 presents preliminary results
motivating the need for an arbitrary precision

library and presenting the knowledge built in the past year by the Global Computing Lab at the
University of Delaware. Section 3 describes the research goals for this summer internship. Section 4
presents the summer timeline and the starting bibliography. Finally, Section 5 presents the equipment
available to the group members for this project.

2. Project Methodology

2.1 GPU-CHARMM Code for MD Simulations

The GPU-CHARMM code implemented at the Global Computing Lab emulates the CHARMM code
with its force field and parameter settings [4, 5]. The code includes both bonded and nonbonded
interactions. Bond, angle, and dihedral potentials are computed using a similar list approach. For the
bonds, each thread iterates through all atoms bonded to an atom i and accumulates the total bond
forces. For the angles and dihedrals, each thread iterates through the atoms that are involved in an
angle or a dihedral with i and calculates the appropriate interactions. Unlike the nonbonded lists,
these lists are constructed once on the CPU at the beginning of the simulation, copied to the GPU, and
never need to be modified.

Nonbonded interactions (Lennard-Jones and electrostatics) are calculated by a single kernel in which
each thread iterates through the neighbor list for a single atom i and accumulates the interactions
between atom i and all its neighbor list entries. The texture cache is used for reading the coordinates
of the neighbor atoms since they are not contiguous in memory. Shifted force forms are used for the
electrostatic and Lennard-Jones potentials so that both energies and forces go smoothly to zero at the
cutoff rcut. The Verlet list approach [6] is used to construct the neighbor list. Briefly, a list is
constructed for each atom containing all atoms within a cutoff rlist, where rlist > rcut. This way, the list
only needs updating whenever an atom has moved more than 0.5(rlist - rcut). The list is constructed on
the GPU as follows. Each thread checks the distance between an atom i and all other atoms, and adds
to i's neighbor list those atoms that are within rlist of i. This process is accelerated by having each
block take advantage of shared memory using a previously described tiling approach [7].

2.2 Study of Constant Energy MD Simulations

NVE dynamics is the original method of molecular dynamics, corresponding to the microcanonical
ensemble of statistical mechanics [8]. NVE MD simulations are also called constant energy

GPU-CHARMM MD step/sec
GeForce 9800 GX2 260.88
Quadro FX 5600 246.37

GTX 280 (double precision) 31.79

Table 1: Performance of our GPU-CHARMM
code for the NaI solution system compared among
different GPUs. The total execution time for 10
million MD steps (10 nanoseconds simulation
time) was used to obtain this data.

simulations because they are performed in a closed environment with constant number of atoms,
constant volume, and constant energy.

We observed a major problem with the total energy of NVE MD simulations executed on single
precision GPUs. The total energy, which should remain constant as the simulation evolves,
systematically diverged from its initial value, converging toward zero both for negative and positive
energies. This phenomenon is not observed on double precision GPUs. To study the phenomenon and
isolate the causes, we considered different GPUs and MD parameters. Table 2 summarizes the
characteristics of the GPUs considered in this study: single-precision GPUs with CUDA 1.1 - without
round-to-nearest-even rounding (SPO); single-precision GPUs with CUDA 2.0 - with round-to-
nearest-even rounding for *, + and - (SPW); and double precision GPUs with CUDA 2.0 (DPW). The
MD simulations are performed with different parameters summarized in Table 3.

GPU characterization
Single precision, CUDA 1.1 (SPO) All floating-point operations do not uses round-to-nearest-

even rounding and are not IEEE compliant
Single precision, CUDA 2.0 (SPW) +/- and * only use round-to-nearest-even rounding and are

IEEE compliant
Double precision (DPW) All floating-point operations use round-to-nearest-even

rounding and are IEEE compliant
§
Table 2: Type of GPUs

MD simulation characterization
Step size (fs) 0.05, 0.10, 0.25, 0.50, 0.80, 1.00, 1.60, 2.00
Initial system configuration Different random seeds, e.g., 100, 768.5, 1200
Total MD steps 80K, 2,000K

Table 3: MD parameter setting

We applied an n-factor analysis: we took into consideration one single parameter in Table 3 at a time.
To study the effect of the step size, we ran the same MD simulation with the same number of steps but
different step sizes on a single precision GPU and CUDA 2.0 (SPW). Figure 2a shows the total
energy over 80K steps with step size equal to 0.05fs (red line), 0.10 fs (green line), and 0.25fs (blue
line). Figure 2.b zooms in on Figure 2.a and shows that the deviation from the constant energy is also
present for larger step sizes than 0.05fs, i.e., 0.10fs, but is not visible with a step size of 0.25fs or
larger. Overall, Figure 2 shows that, even for short simulated intervals, MD simulations with small
step sizes present significant total energy drifting.

The random seed in MD simulations affects the initial system configuration. To study the potential
impact of the initial system configuration, we ran the same MD simulation with different seeds on a
single precision GPU and CUDA 2.0 (SPW). Figure 4 shows the total energy for two of the three
seeds in Table 3. In all cases the simulation shows the same energy drifting. Therefore, we can
conclude that the initial configuration of the MD system is not responsible for the drift.

Figure 4 shows that longer simulations present energy drift even for larger step sizes (2fs) when
executed on a single precision GPU with CUDA 1.1 (red line) and CUDA 2.0 (green line) but have
constant total energy when executed on a double precision GPU. The MD simulation in Figure 4
consists of 20,000K MD steps (40ns). The energy drift was not visible for the same MD step size
when the same simulation was executed over a shorter simulated time of 80K MD steps. The figure

also provides us with a first indication of the cause of the energy drifting. On single precision GPUs
with CUDA 1.1, all the floating-point operations including multiplications, additions, and
subtractions do not use the round-to-nearest-even rounding and the drifting is the largest observed.
With CUDA 2.0 the latter three operations use the round-to-nearest-even rounding but none of the
other operations do (in particular division and sqrt); a slightly smaller drift is still observed. On
double precision GPUs all the operations are IEEE complaint and no drift is measured. This suggests
that the cause of the energy drift must be related to the way the IEEE floating-point operations are
performed on the single precision GPUs.

(a) (b)
Figure 2: Effect of different step size on divergence of total energy in MD simulations

Figure 3: Effect of different random seeds on
divergence of total energy in MD simulations

Figure 4: Long MD simulation on single prec.
GPUs (red and green) and double prec. GPU
(blue)

The reviewer could argue that the energy deviations are due to an incorrect MD algorithm. It is
known that, to be correct, the fluctuations in total energy of MD simulations should be proportional to
the time step size. To evaluate the correctness of the MD code, we considered the constant energy
simulation and we plot the standard deviation of the total energy as a function of time step size for
short simulations of 50,000 steps.

Figure 6 shows the standard deviation of total energy values for different step sizes (0.05fs, 0.1fs,
0.25fs, 0.5fs, 0.8fs, 1fs, 1.6fs and 2fs) on the three GPUs in Table 2. We know from the results in
Figure 2 that for a short simulation, the energy drifts only for small step sizes. From Figure 5 we
know that the drift is larger on SPO. SPO and SPW show a different behavior from DPW for step
sizes less than 0.2fs (x-axis equal to 20). This difference is more accentuated for SPO than SPW.

2.3 Reproducing Drift in Synthetic
Code

Since MD codes are normally very
complex, we designed and implemented
a suite of synthetic programs that show
similar drift as our GPU-CHARMM
code. Because they are less
sophisticated, the synthetic programs
allow us to search for effective solutions
in a controlled testing environment. The
programs consist of the iterative
execution of an operation followed by
its inverse using random numbers, e.g.,
the randomly generated operand x (array
of operands X) is iteratively squared and
then square-rooted. The randomly
generated operand x (array of numbers
X) is taken to be nonnegative and are

randomly chosen within an interval whose maximum value is defined by a seed. Figure 7.a shows the
general program framework and Figure 7.b shows an example of a synthetic program. The random
generated values emulate fluctuation in MD simulations.

General code:

x = (+/-) rand (seed)
loop
 x = op-1 (op (x))
 print x
end loop
 (a)

Example of code with op = sq and op-1 = sqrt
(i.e., sq(x) = x2 = x*x)

x = rand (seed)
loop
 x = sqrt(x * x)
 print x
end loop
 (b)

Figure 7: General framework of the suite program (a) and one simple example with * and sqrt (b)

Our suite of synthetic programs includes these operations: division, multiplication with reciprocal,
and sqrt. The programs can be executed on both CPUs and GPUs. Table 4 summarizes the equations
considered in our first version of the suite, the values for x and y used for our testing, and the number
of iterations per loop.

Equation x values y values (range) Num. iterations
NEED TO UPDATE
WITH SQRT

NEED TO
UPDATE
WITH SQRT

NEED TO UPDATE
WITH SQRT

NEED TO
UPDATE WITH
SQRT

Table 4: Equations and operands used for studying the drifting in synthetic programs

Figure 6: Standard deviation of total energy values in MD
simulations with different step sizes and types of GPU

When running the programs on single precision GPUs using CUDA 2.0 with different operand
settings, we always observe a drift from the CPU results that can converge toward 0, +Inf, or –Inf
based on the value signs (positive or negative) and value ranges (close to zero or very large values).
Figures 8-10 shows three examples of our testing. Figure 8 [MAKE THIS FIGURE] presents results
with sqrt as the main operation in the body of the loop and multiple threads contributing to the final
constant positive value x, which is the sum of an array of values xi. Overall we observe that the x
values do not remain constant (as expected) but drift from their original values depending on the sign
of x, the range of the randomly generated numbers y used in the body of the loops, and the number of
loop iterations.

3. Goals for Summer Internship

The GCLab group has been working on a CPU version of an arbitrary precision division based on a
variable-length array of digits. For the summer, another student in the group will implement a first
version of this division for GPUs. I will work on the implementation of a software sqrt for CPU and
GPU. Under the supervision of Dr. Taufer, we will address hardware optimizations for my code that
are GPU dependent, e.g., use of shared memory for more efficient memory access of data. Therefore,
the goals for the summer are to learn CUDA programming, and then convert my CPU sqrt function to
work for the GPU efficiently. A testing component will conclude my summer internship. The testing
will include two main aspects: accuracy and performance. First we will make sure that the software
sqrt function, contrary to the default sqrt currently available on the GPU, does not cause divergence in
GPU simulations. Then, we will measure the cost of the software sqrt in terms of performance.
Ideally we would like to keep the cost of our function below 10%.

4. Timeline and Starting Bibliography

The detailed plan of the summer internship is as follows:
Week 1: Work on a web page for the research; learn about the other members in the lab
Week 2: Run tests on CPU and GPU to confirm the presence of divergences with sqrt
Week 2 – 4: Learn CUDA programming on the GPU
Week 5 – 7: Implement the sqrt function on CPU and GPU
Week 7: Prepare a poster detailing the project
Week 8: Present poster, debug and optimize GPU sqrt
Week 9 – 10: Continue debugging and optimizing GPU sqrt
Week 10: Prepare and give a presentation for the group summarizing my summer experience

 Write final report of the research and the achievements.

The proposed research is supported by this related work [9-20]. During the internship, we will
critically read and discuss this work.

5. Equipment

This project is supported by research equipment at the Global Computing Lab, led by Dr. Michela
Taufer. The lab includes:

• A homogenous cluster of three high-end workstations (Dual Quad Core Intel(R) Xeon
2.66GHz) each hosting two different types of GPUs: 2 Nvidia Graphics Card GeForce
9800GX2, 2 Nvidia Graphics Card GeForce GTX280, and 2 Nvidia Graphics Card Quadro
FX5600

• A hybrid cluster composed by: 6 quad-core computing nodes, 3 Tesla S1070, each connected
to two computing nodes, and a front-end node for compilation and job submissions. The
nodes are interconnected by Infiniband and Gigiabit Ethernet.

6. References

[1] D.G. Vlachos: A Review of Multiscale Analysis: Examples from Systems Biology, Materials
Engineering, and other Fluid-surface Interacting Systems. Adv. Chem. Eng. 30, 1--61, invited
(2005).

[2] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus:
CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J.
Comput. Chem. 4:187 (1983).

[3] NVIDIA CUDA Programming Guide 2.0, NVIDIA, 2008.

[4] J.E. Davis, A. Ozsoy, S. Patel, and M. Taufer: Towards large-scale molecular dynamics
simulations on graphics processors. In Proceedings of the International Conference on
Bioinformatics and Computational Biology (BICoB), April 2009, New Orleans, Louisiana, USA.

[5] J.E. Davis, B.A. Bauer, M. Taufer, and S. Patel: Molecular Dynamics Simulations of Aqueous
Ions at the Liquid-Vapor Interface Accelerated Using Graphics Processors. Journal of
Computational Physics, 2009 (Submitted).

[6] M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids. Oxford: Clarendon Press, 1987.

[7] H. Nguyen (ed.): GPU Gems 3, Boston: Addison-Wesley, 2008, chapter 31.

[8] Y. Hida, X. S. Li and D. H. Bailey: Algorithms for Quad-Double Precision Floating Point
Arithmetic. IEEE Symposium on Computer Arithmetic, 2001.

[9] D.M. Priest: Algorithms for Arbitrary Precision Floating Point Arithmetic. In Proceedings of the
10th Symposium on Computer Arithmetic, 1991.

[10] J.R. Shewchuk: Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric
Predicates. Technical Report CMU-CS-96-140, Carnegie Mellon University, 1996.

[11] J.R. Shewchuk: Robust Adaptive Floating-Point Geometric Predicates. In Proceeding of the 12th
Annual ACM Symposium Comput. Geom, 1996.

[12] D.M. Smith: Using Multiple-precision Arithmetic. Computing in Science and Engineering,
Volume 5, pp. 88 – 93, 2003.

[13] MPFR C library for multiple-precision floating-point computations. http://www.mpfr.org/

[14] D. B. Bailey et al.: ARPREC - High-Precision Software Directory.
http://crd.lbl.gov/~dhbailey/mpdist/

[15] NVIDIA CUDA Compute Unified Device Architecture:
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programmin
g_Guide_1.0.pdf

[16] Online book from CUDA programming course at UIUC.
http://courses.ece.illinois.edu/ece498/al/Syllabus.html

http://crd.lbl.gov/~dhbailey/mpdist/
http://courses.ece.illinois.edu/ece498/al/Syllabus.html
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf

[17] D. H. Bailey: High-precision Floating-point Arithmetic in Scientific Computation. Computing in
Science and Engineering, May–June 2005.

[18] Y. He and C.H.Q. Ding: Using Accurate Arithmetics to Improve Numerical Reproducibility And
Stability. Journal of Supercomputing, 2001.

[19] R. Howell: Comparison of Two Arbitrary-precision Arithmetic Packages.
http://people.cis.ksu.edu/~rhowell/calculator/comparison.html, 2001.

[20] R. Howell: Arbitrary-Precision Division.
http://www.cis.ksu.edu/~howell/calculator/division.pdf, 2000.

http://people.cis.ksu.edu/~rhowell/calculator/division.pdf
http://people.cis.ksu.edu/~rhowell/calculator/comparison.html

