
Multi-Robot Long-Term Open Polyline Patrol

Sara E. Lahr
Division of Science and Mathematics

U. of Minnesota, Morris; USA
lahrx019@morris.umn.edu

ABSTRACT
Multi-robot patrol is an ever growing field in which a team of robots
works to optimize the frequency in which they pass through certain
points. The number of applications for this is large and includes
garbage collection, cleaning, and surveillance. Previous work fo-
cused on the uniformity of the patrolling algorithm. We present an
algorithm that works towards high-frequency patrol but focuses on
long-term maintainability. A team of robots patrols a region along
a fence. Each robot patrols its own segment of the line and removes
itself to return to the charging station when it runs low on power.
A new robot is then released, and the robots adjust the organization
of the team accordingly. This algorithm presents a way to maintain
coverage of an area over a long period of time as the robots are able
to recharge and then return to patrolling.

Keywords
Multi-robot, Scribbler, patrol, long-term

1. INTRODUCTION
Patrolling is the task of covering a given area repeatedly and is

well suited for a team of robots. The purpose of patrolling ranges
from garbage collection, cleaning, and surveillance. A common
goal of patrolling applications is high-frequency coverage; we want
the maximum amount of information about each point in an area
as possible. Different aspects of this goal are uniformity of vis-
its, maximal average frequency, and maximal minimum frequency.
These can be used to judge the coverage of both an area [5] and
a line [4]. Other algorithms have a different goal and instead try
to provide protection against adversaries [2]. Although these al-
gorithms work well in accomplishing short term goals, they do not
always consider the limitations of robots. Modern robots do require
recharging, a detail that is often overlooked. Our algorithm takes
this into account, and our goal is the longevity of the system from
one application to another.

The area different algorithms focus on covering varies greatly.
Much existing work focuses on coverage within a two-dimensional
area. This type of algorithm can be generalized to the coverage of
a circular region or a closed polygon. An algorithm that creates a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009.

path through an area can be considered as simply creating an one-
dimensional path to be covered. With a circular path, any point
along the region is accessible by any other point from either direc-
tion. The circular nature of the path makes uniformity simple as
the robots can all travel in the same direction. This work focuses
on patrolling along an open-polyline, a line with an end on each
side which makes it more difficult to provide frequency guarantees.

The area is split into equal length segments, and a robot is as-
signed to patrol each one. There exists a central tower or holding
area for all inactive robots. When a robot runs low on battery, it re-
moves itself from the line and makes its way back to the tower. The
other active robots are informed of the now empty segment. All
robots between the empty segment and the tower move over a seg-
ment until the empty position is next to the tower. A new robot is
then released from the tower, and the algorithm continues as before
until another robot needs to be reinforced.

To evaluate the algorithm, we created our own small “fence”
within our lab. We patrolled it using Parallax Scribbler robots.
The robots were preprogrammed and centrally controlled through
a Python module. The remainder of this paper is structured as fol-
lows. Section 2 reviews related works. In Section 3, we discuss
the long-term patrolling algorithm. The hardware and experiment
details are explained in Section 4, and Section 5 presents a few
preliminary results. We discuss the results in Section 6 and then
conclude with Section 7.

2. RELATED WORK
Coverage of a region by a team of multiple robots can be ap-

proached in a number of different ways. Coverage of an area is
a very common task. Choset summarizes recent findings and ex-
plains different techniques[3]. The biggest distinction between dif-
ferent algorithms is the way that they break up the space. This is
a measurement of how the barriers between cells (or regions) cov-
ered by a single robot are defined. Approximate cellular decompo-
sition breaks the space into equally sized cells, but the union of the
cells is only an approximate description of the entire area. Semi-
approximate decomposition slices the space into cells of equal
width with the top and bottom expanding to the shape of the space.
Our algorithm most closely resembles the third technique, in which
the area is decomposed into identical cells that cover the entire
length of the fence.

Once the area’s cellular division has been determined, coverage
algorithms require the creation of a path that covers the area. Some
are more flexible and create paths based on the amount of com-
munication available[6]. With unlimited communication, the paths
are not calculated beforehand; instead the robots act on the infor-
mation received from their team. Unfortunately, the robots used in
our work are unable to communicate as efficiently and are unable
to be as adaptive within an open environment. For this reason, we
took an approach more similar to [1]. Here, the authors still use

some communication to adapt to situations where a robot failed,
but a static path is initially created for the robots. In the same way,
our algorithm assigns a static segment for each robot to cover, but
once a segment needs to be reinforced, the robots are dynamically
reallocated.

Coverage of an area can easily be extended to the patrol of an
area. However, where coverage seeks to visit every point only once,
patrol requires every point to be visited as often as possible. The
authors of [5] focus on achieving optimal frequency by generating a
path that covers all space in the area. The robots are then uniformly
distributed and patrol along this path. While their goal of high-
frequency patrol is similar to ours, their path through the space is
circular. Because there are no ends to the path, uniform frequency
is much easier to achieve.

Patrolling a line is similar to patrolling an area except the path
taken now resembles an open polygon or an open-ended fence. This
requires a more advanced patrolling algorithm. While the path is
easier to generate, it is much harder to patrol uniformly. One tech-
nique used is to create an overlap of the segments such that the
robots move in and out of areas covered by their neighboring team-
mates[4]. This helps to accomplish consistent coverage. While our
work is similar in that we break the line into segments for each
robot, it is different because we focus less on synchronized, uni-
form patrol and more on long-term patrol.

Little work has been done in patrolling a region over the long-
term. While high-frequency coverage is important, it cannot be
maintained if the robots are unable to recharge and be redeployed.
For this reason, our algorithm focuses on the flexibility of patrol
such that when a robot is running low on power, it can remove
itself from the line, and the other robots will adapt to cover the now
empty segment.

3. OPEN POLYLINE PATROL

3.1 Assumptions
We made very few assumptions to complete our algorithm. The

robots are not synchronized, and we do not assume that they move
at equal speeds. In addition, the robots cannot communicate with
each other; they can only communicate with the central computer.

For our experiments, we do assume that there is a human be-
ing present at the central tower. Once a robot returns, the person
changes its batteries and places it into the ready queue. At some
point this could be automated, but this was not part of our goal in
this project.

Currently, we need enough robots to cover all the segments. If
too many robots fail such that there are not enough robots to cover
all of the segments, the functioning robots will continue to patrol
segments, but there will also be some unpatrolled segments.

3.2 Algorithm
Even though our algorithm may not be completely robust, it

completes the task of long-term coverage given enough robots are
available. This is hardly surprising, however, because little can be
done in the way of coverage once all the robots begin to fail.

Our algorithm begins with all available robots stationed at the
tower. See Alg. 1. Lines 3-7 initialize the positions of the robots
to their respective segments. For every segment that needs to be
filled, a robot is removed from the waiting queue within the tower
and becomes active. A thread is started; each thread represents the
individual robot’s actions (Alg. 2). By the end of line 7, there is a
robot patrolling every segment. They will continue to patrol their
segment until they either run out of battery or are needed to pa-
trol a different segment left vacant by another robot. Lines 8-19
of Alg. 1 depict the loop that continues until no more robots are
functioning. If at any point a robot needs to leave its line, it will

Algorithm 1 Patrol Main Loop
Patrol

1: Initialize robots
2: Initialize robots’ segment numbers to that of tower
3: for all seg in line do
4: startT hread(bot, seg)
5: bot.STATUS = ACT IV E
6: goToSeg(bot, seg)
7: end for
8: repeat
9: if A segment is not being patrolled then

10: for all bot where bot.STAUS = ACT IV E do
11: if bot is patrolling a segment between empty segment

and tower then
12: Move bot over one segment
13: Adjust segment number of bot
14: end if
15: end for
16: startT hread(bot, empty_segment)
17: bot.STATUS = ACT IV E
18: end if
19: until All robots have failed

Algorithm 2 Actions of Individual Robots
startThread(bot, seg1)

1: bot moves to seg1
2: repeat
3: bot patrols line
4: if Another segment is empty and bot needs to move to seg2

then
5: killT hread
6: startT hread(bot, seg2)
7: end if
8: until bot runs out of battery or is needed elsewhere

report that its former segment is now empty. The central control
will then send reinforcements. All robots which are patrolling seg-
ments in between the empty segment and the central tower stop
patrolling, move down a segment, and start patrolling a new seg-
ment. After this slide, the empty segment will be the first segment
from the tower. The tower releases a new robot in the same way
that the robots were released at the beginning of the algorithm, and
all segments are again covered.

4. EXPERIMENTS

4.1 Hardware
For this work, we employed Parallax Scribbler robots. Marketed

as toys, the Scribblers (See Fig. 1) have limited sensor capabilities.
They come preconfigured and can do a number of tasks without
any programming on the user’s part. We used them because they
are relatively inexpensive and available in larger quantities.

Scribblers come equipped with a BASIC Stamp R©2 microcon-
troller that is easily accessed by a computer through a serial port.
There are three light sensors and two infrared sensors on its front
side. Underneath the Scribbler, there are two line sensors that use
infrared to distinguish between light and dark and return a binary
response. Basic output is achieved through a speaker and three
LED lights. There are two wheels controlled by independent DC
motors along with a stall sensor to respond when the Scribbler be-
comes stuck. Scribblers come with software for accessing and pro-
gramming the firmware. The Scribbler can be programmed both

Figure 1: Scribbler robots with Flukes.

via a graphical interface and text (PBASIC).
The Scribblers also come with the Fluke, created by Georgia

Tech. It contains a Python module that allows for higher-level ac-
cess to the Scribbler. The module was created by the Institute for
Personal Robots in Education (IPRE). The IPRE Fluke is Bluetooth
compatible, allowing the Scribbler to be accessed wirelessly. The
Fluke adds two LEDs, three infrared sensors, a battery voltage sen-
sor, and a color camera to the available sensors.

Some aspects of our algorithm were implemented to work
around the limitations of the Scribblers. To better understand the
reasoning behind these decisions, some of the limitations are men-
tioned here. The Scribblers lack odometry, making exact, repeat-
able movements or turns nearly impossible. The light sensors and
infrared sensors can be inconsistent as the values vary greatly de-
pending on the light source or the texture of the ground surface. The
Scribbler is not able to initiate any sort of communication, requir-
ing the central control to query the Scribblers if any information is
needed from the robot.

4.2 Architecture
To be able to control many Scribblers at once, we designed an

architecture that was split into three layers. This allowed for the
Scribblers to act autonomously when needed and upon the instruc-
tions or queries sent from the central control. The central control
could not communicate with all the Scribblers at once, so this setup
was necessary.

Layer 1
Layer 1 is the lowestlevel of control and consists of the firmware
on both the Scribbler robot and on the connected Fluke. The Scrib-
bler firmware, written in PBASIC, communicates directly with the
Scribbler hardware; it controls the motors and is able to get direct
sensor data. In addition, the ability to line-follow was added to this
level. This function requires immediate feedback from the infrared
line sensors underneath the robot. Adding this function at this layer
allows the Scribbler to line-follow as a default behavior.

Attached to the Scribbler is the Fluke, programmed in C. The
firmware on the Fluke handles all the image processing. Also,
in the same way that line-following is a function on the Scribbler
firmware, the ability to find the central tower was added as a func-
tion on the Fluke. When returning to the tower, the Fluke is con-
stantly taking pictures and reacts immediately by heading in the
appropriate direction.

Layer 2
This layer handles the communication between Layers 1 and 3.
Written in Python, it is the base for all upper-level functions. For

Figure 2: Part of the experimental setup. A lone Scribbler
leaves the tower and heads towards the line. It will turn ei-
ther left or right onto the line before it starts jumping to other
segments. The hanging orange targets seen are used to guide
the Scribbler when it needs to follow the line backwards.

example, it takes a command in Python and translates it so the
Scribbler or Fluke can interpret it. All basic functions, like mov-
ing and querying the Scribbler, are done at this level. All queries
return information at this level. It also contains all the information
for setting up the Bluetooth connection between the Scribblers and
the computer.

Layer 3
Layer 3 contains the actual patrolling algorithm. These high-level
functions use all the lower-level functions within Layer 2. This
layer also controls all the threading. Each robot in action is con-
trolled within a thread, and the thread terminates when the robot is
finished. At all times, this layer is able to communicate with any
robots connected over Bluetooth, whether they are patrolling the
line or not.

4.3 Environment
To test our line patrol algorithm, we created a physical line for

the Scribblers to follow (See Fig. 2). This line is cut into equal-
length segments, with segments separated by white space. Each
line segment is patrolled by one Scribbler. For our experiments,
we created six line segments, three on either side of the central
tower, which acts both as a recharging station and as the location
of robots in a queue waiting to be deployed. Ten Scribbler robots
were available to patrol.

We added a few features to the line to make up for the Scribblers’
shortcomings. The lines are black, but every other part of the sur-
face is white. Each line is thirty-four inches long with an eight inch
approach region on one edge. The space between the segments is
nine inches (the minimum amount of space to prevent Scribblers
on adjacent segments from colliding). Over each line we added an
orange target to help the Scribblers visually stay on the line. We
added two brightly colored cones that the cameras on the Flukes
could track. These were used to guide the Scribblers back to base
and onto the line.

Although the Scribblers had more sensors available, we only
used select sensors for added simplicity. The infrared line sensors
were used to follow the line forward. Because the line sensors are
not centered underneath the robot, we could not use them to follow
the line backwards. Also, without accurate odometry, we could not
turn the Scribblers around to go back along the line. Instead we
used the camera to track the orange target hanging above each line.
The camera was also used as a way to straighten the Scribbler on

the line as well as to track the marker that defined the tower.

4.4 Goals
Throughout the experiment, we kept track of a number of vari-

ables. We were most interested in the amount of time that each
Scribbler spent idle in the queue versus the time it actively patrolled
the line. Maximizing active time and minimizing idle time would
allow us to achieve maximum efficiency. To determine the fre-
quency of how often each line was patrolled, we also recorded the
number of passes a Scribbler did on each segment as well as the
total number of passes each Scribbler did on all the segments.

5. RESULTS
At this point, we were only able to run preliminary experiments

and tests as the system is not yet completely operational. These
tests do not return enough data for us to accurately analyze the
system, but they do return enough figures to get an initial idea of
the algorithm’s performance.

We did a few runs to test that the robots were capable of reliev-
ing their teammates and returning to base. Table 1 shows the results
from three of these runs. We were using three robots to patrol two
segments, so at any given time, one robot was idle. Also, because
we were testing the accuracy with which the Scribblers adjusted,
we limited them to no more than two passes before they returned
to base. This table gives an accurate idea of the timings associated
with different actions. For these runs, the robots started on the seg-
ments they were to patrol. In the first run, both Anders and Caprica
finished two passes on the line in roughly 26 seconds. From here,
Leoben was released from the queue before starting to patrol. Its
approach to the line accounts for the extra time. From that point on,
the robots are released from the queue and accumulate the amount
of time spent in different locations. There is a large inconsistency
with this data as the Scribblers experience various physical prob-
lems with reaching the line and patrolling the segment, but with
more robots and segments, these numbers will begin to balance out.
The variance introduced by these physical difficulties will become
trivial.

We then expanded the experiment to include two more segments
and two more robots (See Table 2). This time we ran the robots un-
til they ran low enough on battery to force them to return to base.
We did not use fully charged batteries in order to keep the exper-
iment to a reasonable amount of time. The robots were versatile
enough to switch between the needed segments. Table 2 displays
the switching of robots between segments. The segment number is
the location of the segment within the line. Note that the segments
are numbered 1, 2, 4, and 5 because segment 3 is the base. During
the experiment, we also had a robot experience a communication
error. After Hera returned and the batteries were changed, it was
not able to reconnect. Nevertheless, the other robots were able to
account for the loss of a teammate.

6. DISCUSSION
Even though we are still in the preliminary stages of collecting

data, we are able to make a few generalizations based the behavior
we have seen so far. First, we realize that the amount of idle time
and active time depends greatly on the ratio of robots to segments.
Too many robots in the queue results in more time spent idling.
Also, as the number of segments grows, the amount power that is
needed to reach the furthest segments also increases. The robots
that return most often are the ones furthest away, as they have al-
ready expended power patrolling closer segments before being sent
to reinforce the outer segments.

In addition, a very accurate battery voltage sensor is necessary. A
few times throughout the runs, a sensor would return an impossibly

Table 1: Initial timings using three robots to patrol two seg-
ments. The times are cumulative for each Scribbler. Horizontal
lines separate individual experiment runs (3 total)

Name Passes Total Passes Active Time Idle Time
Anders 2 2 25.61749601 0
Caprica 2 2 27.65314102 0
Leoben 2 2 83.98272991 25.61783504
Anders 2 4 108.7633421 27.60852504
Caprica 2 4 97.66184402 79.18434095
Leoben 2 4 174.581063 61.24988103
Caprica 1 1 45.93947506 0
Anders 2 2 58.04915404 0
Leoben 2 2 56.32050991 71.99918509
Anders 2 4 134.5267649 25.76582193
Leoben 0 2 106.6047308 115.4285653
Caprica 2 3 80.16399407 105.5323648
Caprica 2 2 43.68263197 0
Anders 2 2 52.43511486 0
Leoben 2 2 28.92223597 77.64051199
Anders 2 4 101.5508718 55.41879892
Caprica 0 2 63.87834907 103.3684309

low level. If this occurred, the robot would return to base even
though it still had enough power to continue its task.

Lastly, the system is very dependent on communication be-
tween the central control and the Scribblers. Concurrent commands
would limit the amount of time robots spend idle. There may be a
task for the robot, but until the central control is able to instruct
the robot on what that is, it will remain in its current state. Tim-
ings vary greatly depending on the current state of the system when
instructions are needed.

7. CONCLUSION
Multi-robot patrol is becoming increasingly applicable, and

much work has been done in examining the efficiency and fre-
quency with which the robots patrol. Patrolling along an open
polyline creates a more challenging task in that the robots need
to backtrack across the area to achieve even coverage. While high-
frequency coverage is important, we chose to focus on maintaining

Table 2: Segment rotation using six robots to patrol four seg-
ments: 1, 2, 4, 5. Segment 3 is the base and is not patrolled.

Name Segment Passes Total Passes
Leoben 4 4 4
Anders 1 10 10
Caprica 2 8 8

Hera 5 12 12
Sharon 4 11 11
Anders 4 0 10
Leoben 2 14 18
Anders 5 3 13

Tory 4 1 1
Caprica 1 20 28
Leoben 2 2 20

Tory 5 0 1
Sharon 5 4 15

the patrol long-term. The robots patrol their segments but remove
themselves once their battery level gets below a certain threshold.
It returns to base, and the remaining robots dynamically relocate to
fill the empty space. Lastly, a freshly charged robot is released to
reinforce the active robots.

Much can be done in future work. Currently, to cover all the seg-
ments at all times, there need to be enough working robots. An idea
for future work would be to adapt the algorithm such that the robots
could cover more than one segment if there are too few robots avail-
able. They could return to a single segment if a new robot were to
arrive.

In addition, we are only patrolling equal length straight lines.
Extending the algorithm to a more diverse setting would return
more realistic results. Varying the shape of the line would require
the segments to vary in length as the robots would need more time
to patrol a more difficult region. It would also determine how adapt-
able the algorithm is to different environments.

8. ACKNOWLEDGEMENTS
This research was supported by the Distributed Research Ex-

periences for Undergraduates (DREU) program through the Com-
puter Research Association’s Committee on the Status of Women
in Computing Research (CRA-W). I would like to thank my mentor
Dr. Maria Gini as well as the other students in the artificial intelli-
gence and robotics labs for their support. In particular, I would like
to thank Elizabeth Jensen and Mike Franklin for their part in this
project.

9. REFERENCES
[1] N. Agmon, N. Hazon, and G. A. Kaminka The giving tree:

constructing trees for efficient offline and online multi-robot
coverage In Annals of Mathematics and Artificial
Intelligence, vol. 52, pages 143-168, 2008

[2] N. Agmon, S. Kraus, and G. A. Kaminka Multi-Robot
Perimeter Patrol in Adversarial Settings Robotics and
Automation, IEEE, 2008

[3] H. Choset Coverage for Robotics–A Aurvey of Recent
Results In Annals of Mathematics and Artificial Intelligence,
vol. 31, pages 113-126, October 2001

[4] Y. Elmaliach, A. Shiloni, and G. A. Kaminka A Realistic
Model of Frequency-Based Multi-Robot Polyline Patrolling
In Padgham, Parkes, Müller, and Parsons, editors, Proc. of
7th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Estoril, Portugal, 12-16 May 2008.

[5] Y. Elmaliach, N. Agmon, and G. A. Kaminka Multi-robot
area patrol under frequency constraints. In Proceedings of
IEEE International Conference on Robotics and Automation
(ICRA-07), 2007

[6] I. Rekleitis, A. P. New, E. S. Rankin, H. Choset Efficient
Boustrophedon Multi-Robot Coverage: an algorithmic
approach In Annals of Mathematics and Artificial
Intelligence, vol. 52, pages 109-142, 2008

