
Automated Instruction Selector Generation
with Jikes RVM

Adam Fidel, Chujiao Ma, Tim Richards, J. Eliot B. Moss

Dept. of Computer Science, University of Massachusetts Amherst
{afidel,chujiao,richards,moss,}@cs.umass.edu

Abstract

As novel and major extensions are added to machine micro-architectures,
compiler intermediate representations and virtual machines, the need for
automatic generation of back-end compiler components to support these
extensions grows dramatically. Tools to assist in developing compiler
front-ends currently exist, yet there has been no focus on sufficiently
generic and framework-independent tools for compiler back-ends. Gist,
a tool created by researchers at the University of Massachusetts Amherst,
attempts to bridge this gap; specifically, it generates an instruction selec-
tor given a compiler intermediate representation (IR) and a target machine
instruction set architecture (ISA). Other research efforts fixed one side of
the problem, either the source IR or the target ISA, which only presents
a non-generic solution and reduces the problem’s difficulty tremendously.
By introducing a universal mechanism to describe a machine instruction
set architecture and a compiler’s IR, Gist is general enough to generate
instruction selection patterns for any combination of ISA and IR that can
be adequately described by this mechanism. The focus of this research is
on generating instruction selectors specifically for the Jikes RVM baseline
compiler with respect to the PowerPC architecture.

1 Introduction

Considerable research effort has been poured into automatic generation of com-
piler components, yet much of the focus has been on the front-end work such
as parsing and scanning. One of the main phases of a compiler back-end is
the instruction selector. In essence, for each compiler intermediate represen-
tation (IR) or virtual machine (VM) operation, the instruction selector emits
a sequence of target instructions that attempt to replicate the operation se-
mantically. Gist is a tool that generates instruction selection patterns given a
description of the target machine, either the IR or VM specification and a map-
ping of the memories between the two. These descriptions are provided using a
sufficiently expressive machine description language CISL (Cogent Instruction
Set Language). Despite its name, CISL is used to describe both the target ma-
chine instruction set architecture (ISA) and the source IR. A memory mapping
is then needed to specify, for example, that a certain target register is to be
used to store a stack pointer, or that certain addressing modes from the source
correspond in a particular manner on the target.

1



In the spirit of generic and framework-independent instruction selection gen-
eration, Gist generates instruction selection patterns in strict XML form. These
can be adapted to certain compiler frameworks with negligible amount of effort.
Our contention is that allowing the combination of Gist and a compiler-specific
adapter to create an instruction selector provides a quick and easy way to con-
struct this compiler component that is easily provable to be correct and less
prone to human error.

The need for automated compiler component generation is apparent: ad-
vances in current or completely new micro-architectures require tremendous
modification of existing compilers to support these changes. Similarly, novel
programming language features or entirely new languages that target a virtual
machine will also require reworking of the compiler back-end and the instruc-
tion selector specifically. Innovative efforts dealing with such changes might be
prohibited due to the high cost of reworking the compiler. Automating instruc-
tion selection with Gist promotes experimentation and research for this type of
innovation.

Jikes RVM [1] is a Java virtual machine used primarily for research purposes.
It is the perfect candidate for automatic instruction selection generation due to
its rich runtime semantics and its open source foundation. We will be working
with what is called the Baseline compiler in Jikes which is a non-optimizing just-
in-time compiler. The rest of the paper will describe our attempt to generate a
functional instruction selector for Jikes RVM targeting the PowerPC ISA using
Gist.

2 Related Work

As mentioned previously, most of the success enjoyed by automatic compiler
component generation dealt with front-end components. An automatic way to
generate a compiler parser was introduced in 1979 with yacc [6], which built
its parsers using grammars similar to Backus-Naur Form. ANother Tool for
Language Recognition (ANTLR) [8] is another parser generator similar to yacc
that uses LL(*) parsing.

Dealing with the back-end has proven to be a much greater challenge. Cattell
[3] proposed a way to automatically generate code generators using a set of
axioms to rewrite the compiler’s IR to a syntax tree representing the semantics
on the target ISA. Because the description language is essentially the compiler’s
IR, Cattell’s work was heavily dependent on the compiler framework. Gist
differs in its commitment to generality; it relies on machine descriptions of both
the compiler IR and target ISA that are independent of each other. Sharing a
similar pitfall with regards to generic descriptions, Ceng et al [4] formalized a
method to retarget the C compiler using instruction semantic models. Although
not tied to a specific framework, Ceng’s research relied on C specifically, and it is
unclear whether their approach will hold for other languages with rich runtime
semantics such as Java.

2



3 Background

When dealing with normal compiler writing, the back-end components are usu-
ally built by hand, allowing more room for human-induced errors to be brought
into play. Gist automates the construction of a compiler’s instruction selector
given adequate description of a compiler IR and a target ISA in the description
language CISL.

During the Gist process, there is a sequence of clearly defined steps to get
from the concept to a working instruction selector that can be plugged into an
existing compiler framework. First, identify the compiler IR or virtual machine
specification from which to find matches. This will be known as the source.
Also, identify the machine instruction set architecture that will be the end
target of instruction emits. Our research focused on Jikes RVM, which uses the
Java virtual machine bytecode specification, for the source and the PowerPC
micro-architecture for the target.

instruction class iadd extends ByteCode {
fun encode() {
op = 96;

}
fun effect() {
S.slot[spTopOffset + 4)] =
S.slot[spTopOffset] + S.slot[spTopOffset];

}
}

Figure 1: CISL description of the iadd bytecode for the JVM specification

Next, sufficiently describe the semantics of both the target and source in
CISL. It is worth noting that for the target, the description does not have to
be fully exhaustive. For example, when working with the matching between
Jikes RVM and the PowerPC architecture, it is not necessary to provide seman-
tic descriptions for PowerPC’s vector instructions as the Java virtual machine
(bytecode) specification has no VM instructions dealing specifically with vec-
tors. Figure 1 shows a semantic description of the Jikes RVM bytecode iadd.
Because Jikes RVM is a stack-based virtual machine, all operations are per-
formed on stack elements. With the iadd instruction, two integers are popped
off of the stack, added, and the sum is placed back on the stack. This operation
can be succinctly expressed in CISL using very few lines of code. Note that in
the figure, syntactical information is also provided, yet it is not necessary for
the process of instruction selection. This is because CISL descriptions can be,
and have been in the past [7], used to generate assemblers, dissassemblers, and
functional simulators.

The descriptions provided in the previous step are independent of any specific
pairing of target and source. After an adequate amount of machine descriptions
are provided for the source and target, the next step is to specify the mapping

3



of memories between the two. This mapping is specific for each target/source
pair. An example of a memory mapping would be denoting that some temporary
registers utilized in the source description map explicitly to a set of nonvolatile
general purpose registers on the target. Pertaining to the Jikes RVM/PowerPC
mapping, we directly denoted that the frame pointer used in Jikes RVM, which
holds the base address of the operation stack, is realized by register 1 in the
PowerPC.

After providing the memory mapping and the descriptions for the source
and the target, Gist will attempt to find instruction selection patterns for each
source instruction using a heuristic greedy best-first search. A heuristic search
is necessary because of the exponential growth of the search space due to the
Cartesian product-like nature of the source size and target size. Recent research
[5] also suggests that searching for a target pattern to semantically replicate a
source IR is recursively undecidable. It is also for this reason that automatic
generation of instruction selection patterns must use a heuristic search.

Once Gist finds a pattern for each source instruction, it is only a matter
of developing a small adapter that takes in these instruction selection patterns
in XML form and outputs functioning code that is final instruction selector.
This instruction selector can be plugged directly into the compiler framework
and tested by simply compiling valid code and observing the behavior of the
resulting program.

4 Method

Our goal for the project was to cover a large range of instruction types for the
JVM specification: integer instructions, long instructions, single- and double-
precision floating point instructions, stack manipulation instructions, type con-
version instructions, array access instructions, and stack access instructions.
Because of the stack-based nature of Jikes RVM and the fact that PowerPC is
a RISC architecture that provides no inherent stack operations or addressing
modes dealing with memory-to-memory operations, almost all of the instruction
selection patterns have to match a large sequence (three or more) of instructions
on the target.

In Jikes RVM, all data that is used in the basic instructions are stored in an
operand stack which has a quantum data size of 32-bits. In our CISL description
of the source, we based all memory access as being word-aligned to match this.
The PowerPC target, being a RISC architecture, has to load data word-by-word
from memory into its register file of 32-bit registers, perform register-to-register
operations on that data, and store the results back into memory one word at a
time.

CISL provides a mechanism to deal with compiler constants or virtual ma-
chines constants without directly interacting with them. For matching with
Jikes RVM, this is essential due to its stack pointer being a constant named sp-
TopOffset. Jikes RVM is unique amongst Java virtual machines because it itself
is written in Java. In our description, for instructions dealing with the stack

4



(i.e., virtually every instruction) we can explicitly reference this variable which
is formally declared in the Baseline compiler as public int spTopOffset. For
the CISL description of the bytecode iadd in Figure 1, notice how we are describ-
ing stack access using this compiler variable and not anything that is formally
described in the JVM specification. This concept of using outside informa-
tion related to the frameworks themselves shows how flexible CISL can be at
describing the compiler IR or VM specification.

After we outlined and provided sufficient machine descriptions for both Jikes
RVM and PowerPC to cover the broad range of instructions discussed previously,
we executed Gist to produce the instruction selection patterns in XML form.
Taking as input these XML patterns is a small adapter written in Java which
parses the metadata and outputs a functional instruction selector for the Jikes
RVM Baseline compiler. Because Gist itself is written in Java, these framework-
specific adapters can seamlessly be integrated into Gist, completing the entire
process from machine descriptions to valid instruction selector.

The adapters make extensive use of the StringTemplate Java library which
was written by Terence Parr, the creator of ANTLR. ANTLR [8] is a tool that
aids in automating a compiler’s front-end, so it is only fitting that we will
use a related tool to assist in automating back-end components. In essence,
the adapters’ main functionality is to convert these XML patterns into forms
that the internal compiler framework expects. Since Jikes RVM is written
in Java, the Jikes adapter produces code that represents Java methods, one
per bytecode. These methods must take the form of protected final void
emit <bytecode> where <bytecode> is the actual name of the VM operation.

protected final void emit_iadd() {
popInt(T0);
popInt(T1);
asm.emitADD(T2, T1, T0);
pushInt(T2);

}

Figure 2: Original emit sequence for the iadd bytecode in the Baseline compiler

Figure 2 illustrates the original version of the iadd bytecode in the Baseline
compiler. Note that the asm library that is referenced in the code is the ac-
tual PowerPC machine library that emits instructions to the instruction queue.
popInt and pushInt are internal methods that simply call load/store instruc-
tions to the machine and handle stack pointer arithemetic. Figure 3 shows the
same bytecode that is automatically generated by Gist. Notice how there is less
method invocation overhead as the generated version simply invokes all the asm
methods directly instead of encapsulating them in separate method calls. The
adapter also handles stack manipulation, which is framework dependent.

5



protected final void emit_iadd() {
asm.emitLWZ(T0, 4+spTopOffset, 1);
asm.emitLWZ(T1, spTopOffset, 1);
asm.emitADD(T2, T1, T0);
asm.emitSTW(T2, 4+spTopOffset, 1);
spTopOffset += BYTES_IN_STACKSLOT;

}

Figure 3: Gist generated emit sequence for the iadd bytecode

Figure 4: Slowdown of DaCapo tests on generated compiler (lower = better)

5 Results

As our goal was to generate a fully functional instruction selector for the Jikes
RVM targeting PowerPC, there are many reasons why we cannot cover the
full spectrum of the JVM specification. One of the major problems is that
many JVM operations rely on runtime information, which cannot be statically
matched for obvious reasons. The original implementation of the Jikes RVM
Baseline compiler contains 165 emit methods for the set of JVM bytecodes. Of
these 165, we consider 123 bytecodes for matching. We discard consideration
for the 42 bytecodes based on the fact that they either contain integrated run
time semantics, have ambiguous semantics in the JVM specification, or they are
not supported on the PowerPC architecture.

Gist is able to match semantics and generate valid instruction selector emit
methods for 85 bytecodes. This is a 69% coverage rate for the bytecodes that we
consider. Although this percentage may seem low at first glance, consider that
the bytecodes covered span a broad range of JVM capability outlined previously.

Because Gist was able to generate an actual instruction selector, we were

6



able to plug the Java source code into the Baseline compiler and observe its
performance. The Baseline compiler is a JIT compiler, so we can run standard
benchmarks and test their runtimes as opposed to testing static compile times.
We chose to perform tests using a standard benchmarking suite, DaCapo [2].
Figure 4 shows the relative slowdown of the benchmarks on the generated Base-
line compiler vs. its original implementation, averaged over ten trials. Note
that although for some tests, our implementation shows a small improvement in
runtime, we attribute this as within the point of being statistically insignificant.

6 Conclusion

Gist introduces an automatic and framework-independent method of instruction
selector generation for compiler back-ends. We demonstrate this methodology
by building a functional instruction selector for the Jikes RVM baseline com-
piler targeting the PowerPC architecture. Code generated by our instruction
selector is functionally identical to code emitted by the original implementation
of the Baseline compiler, and the instruction selector itself has a runtime nearly
identical to the original.

References

[1] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng,
J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B.
Moss, T. Ngo, and V. Sarkar. The jikes research virtual machine project:
building an open-source research community. IBM Syst. J., 44(2):399–417,
2005.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The dacapo
benchmarks: java benchmarking development and analysis. SIGPLAN Not.,
41(10):169–190, 2006.

[3] R. G. G. Cattell. Formalization and automatic derivation of code generators.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1978.

[4] J. Ceng, M. Hohenauer, R. Leupers, G. Ascheid, H. Meyr, and G. Braun. C
compiler retargeting based on instruction semantics models. In DATE ’05:
Proceedings of the conference on Design, Automation and Test in Europe,
pages 1150–1155, Washington, DC, USA, 2005. IEEE Computer Society.

[5] J. Dias. Automatically Generating the Back End of a Compiler Using Declar-
ative Machine Descriptions. PhD thesis, Harvard University, 2008.

[6] S. C. Johnson. Unix Programmer’s Manual, volume 2b. 1979.

7



[7] J. E. B. Moss, T. Palmer, T. Richards, E. K. Walters, II, and C. C. Weems.
Cisl: a class-based machine description language for co-generation of com-
pilers and simulators. Int. J. Parallel Program., 33(2):231–246, 2005.

[8] T. J. Parr and R. W. Quong. Antlr: a predicated-ll(k) parser generator.
Softw. Pract. Exper., 25(7):789–810, 1995.

8


