
Matrix Multiplication Specialization in STAPL

Adam Fidel, Lena Olson, Antal Buss, Timmie Smith, Gabriel Tanase,
Nathan Thomas, Mauro Bianco, Nancy M. Amato, Lawrence Rauchwerger

Parasol Lab, Dept. of Computer Science, Texas A&M University
{afidel,lolson,abuss,timmie,gabrielt,nthomas,bmm,amato,rwerger}@cs.tamu.edu

Abstract

The Standard Template Adaptive Parallel Library (STAPL) is a su-
perset of C++’s Standard Template Library (STL) which allows high-
productivity parallel programming in both distributed and shared mem-
ory environments. This framework provides parallel equivalents of STL

containers and algorithms enabling ease of development for parallel sys-
tems. In this paper, we will discuss our methodology for implementing
a fast and efficient matrix multiplication algorithm in STAPL. Our imple-
mentation employs external linear algebra libraries, specifically the Basic
Linear Algebra Subprograms (BLAS) library which includes highly opti-
mized sequential matrix operations. The paper will describe the benefits
of creating a parallel matrix multiplication algorithm whose library calls
are specialized based on both the matrix storage and traversal. This spe-
cialization technique ensures that the most appropriate implementation
in terms of data access and structure will be used, resulting in increased
efficiency compared to a non-specialized approach.

1 Introduction

Parallel libraries such as the Standard Template Adaptive Parallel Library
(STAPL) [1, 5, 7, 6] allow developers to focus their programming efforts on
higher-level abstract issues, rather than the intricacies of the parallelization
itself. By providing a standard set of operations and procedures to the program-
mer, parallel code can be produced in a manner comparable to the development
of sequential programs. With this in mind, we sought to incorporate a matrix
multiplication algorithm which took advantage of parallelization in a way that
is transparent to the end user.

In STAPL, one of the major components is the pAlgorithms, which are the
direct equivalents of the Standard Template Library’s sequential algorithms.
STAPL also provides pContainers (parallel containers) and an abstraction of
a container’s data access called views. In terms of STL, the view defines an
iteration space over a pContainer. We deal specifically with the pMatrix, where
a column view can be taken over a container that is stored row-major. The input
for a pAlgorithm in STAPL is a view and a work function which specifies the
operations to be executed on the data. In the case of matrix multiplication,
a view can be taken over an entire row, an entire column or a block of both
rows and columns. This paper will focus mainly on specializing a matrix-matrix
multiplication operation on row-major views and column-major views.

1



Interoperability is a key goal for STAPL’s ability to work seamlessly across
multiple platforms. For a framework to be interoperable, it must take advantage
of routines and operations from external libraries and the framework’s own
methods should have the ability to be invoked from other frameworks. We
focus on STAPL’s ability to incorporate well-known and highly optimized libraries
effectively into its framework.

2 Background

Matrix multiplication is a key part of many scientific applications where matrices
can be dense and sufficiently large. For this reason, it is important that a parallel
framework be able to handle distributed matrix multiplication in an efficient
way. The manner in which the data is stored should also be flexible, in order to
fit the needs of various applications.

For serial matrix multiplication, the Basic Linear Algebra Subroutines (BLAS)
[4] libray can be used. BLAS is a collection of highly optimized FORTRAN subrou-
tines for matrix and vector operations, including the level 3 subroutine general
matrix multiply (gemm). By basing a parallel implementation on gemm, it is
unnecessary to optimize the serial multiplication, instead relying on BLAS to
provide an efficient implementation. However, because BLAS is a non-STAPL ex-
ternal library and requires the input data to be laid out in a specific format, it
is not always possible to use the library. Additionally, BLAS only handles four
data types: float, double, complex, and complex-double. When data has
other types or is laid out in a non-conformable format, a different and often
slower method of matrix multiplication must be used.

Partial specialization is a technique in generic programming in which a gen-
eral function is provided along with several versions of the same function based
on traits determined statically. The advantage of partial specialization is that
when the data layout and type is appropriate, BLAS may be used, while still
providing a general algorithm which can handle cases that do not conform to
BLAS requirements. This allows the benefits of having fast methods which only
work in a few cases while still having a fall-back operation which will always
provide correct results. The choice between specializations and the general case
is made statically at compile time, providing no additonal run-time cost.

3 Proposed Method

In STAPL, pContainers are distributed across multiple processors in many dif-
ferent partitioning strategies. The pMatrix container defines three types of
partitions: block, block-cyclic and block-band. Block-band partitioning is a
method of distribution in which each node contains blocks that consist of an
entire row or column of the matrix. Our algorithm works most effectively for
block-band distributions, but also provides functionality for block partitions.

Each matrix can be stored in block-band format in one of two directions,

2



Figure 1: An illustration of the roll algorithm using RCR matrix multiplication

p matrix multiply(A,B, C)

1. FOR 1 to number of blocks
2. multiply sub-blocks of A by sub-blocks of B using gemm
3. store result in C
4. rotate sub-blocks of B
5. END FOR

Figure 2: Proposed matrix multiplication pAlgorithm

hence there are 23 combinations of data partitioning possible for matrix multi-
plication. In this paper they will be referred to by a three-letter abbreviation,
where R stands for row-major and C for column-major block-band partition-
ing, and ordering is ABC for multiplication A × B = C. For example, the case
where A and C are row-major and B is column-major will be referred to as
RCR. In the general algorithm, a row-view of A and C and a column-view of B
is taken, irrespective of the actual data distribution. The multiplication is then
performed using the Standard Template Library’s innerproduct.

The general algorithm is very inefficient because it ignores the physical data
partitioning, thus disallowing the use of BLAS due to data incontiguity. There-
fore, more specific algorithms that exploit data locality can be used to improve
performance. A different algorithm is needed for each case, because the data
locality determines which of the three matrices should be rotated, as well as
which elements to multiply and where to store the result. Eight algorithms are
needed, yet six of these algorithms are very similar; only when the matrices to
be multiplied are stored partitioned row-wise and the result is stored partitioned
column-wise, or vice versa, is a substantially different algorithm needed. For

3



purposes of this paper, we will explain in detail one example: RCR.
Our proposed pAlgorithm employs the use of a temporary matrix in which

to store the rotated data. As shown in Figure 2, the entirety of the algorithm
is encased inside of a for loop. Each iteration consists of a block of A being
multiplied with B utilizing gemm. Note that these two blocks are both local to
the same processor and thus the proper conditions for BLAS multiplication are
met. The result of this sequential multiplication is then stored in a sub-block
of C which is also local. Then the matrix B is “rotated” meaning each block is
sent to the processor directly to its right. At this point, the loop repeats itself
until each block of the matrix A is multiplied with each block in B.

The other versions of the algorithm are similar to the one in Figure 1. In
each case, one of the three matrices is rotated. In some cases partial results are
stored in an entire row- or column-band in C, rather than the complete result
being stored in one sub-block after each multiplication.

In the cases where both A and B are stored with a different major than C
(i.e. RRC and CCR), the algorithm is substantially different. These cases are
fundamentally more difficult than the other six, and the equivalent algorithm
would require a rotation of two matrices and thus a squaring of the total number
of rotations and multiplications. This approach is undesirable because as the
number of blocks increases linearly, the number of rotates and multiplications
increases quadratically. This results in an algorithm that does not scale. An
alternate approach is to transpose one of the matrices and then call one of the
six fast specializations. The efficiency of transposition, if we focus solely on
moving data between processors and ignore rearranging it within each one and
assume that each processor has only one block, depends on the communication
costs. If there are p processors, the number of elements in an n×n matrix that
must be transferred by each processor is

n2 · (p− 1)
p2

(1)

with each processor communicating (n
p )2 elements with each other processor.

The cost of communication for the transpose, Ctranspose, for a start-up time ts
and a transfer rate of tw is thus

Ctranspose = (p− 1)(ts + (
n

p
)2 · tw) ≈ ts · p +

n2

p
· tw (2)

Therefore, when the start-up cost is relatively high, the communication cost
will be large because although the amount of data communicated decreases
with increasing processor count, the number of messages sent increases, and ts
will dominate. However, the communication cost for the transpose operation is
always less than the cost of the sum of the rotate steps in the multiplication
algorithms.

Crotate = ts · p + n2 · tw > Ctranspose (3)

However, this relies on a well-implemented transpose function which sends as
many elements as possible at a time, and a reasonably large n. Otherwise,

4



the start-up costs will dominate the communication and the transpose will not
achieve reasonable performance. We implement the transpose using STAPL’s
built-in p copy, which is the parallel version of STL’s copy, and we pass it a
view consisting of (n

p )2 elements.
In addition to the eight algorithms discussed above, each algorithm also has

a number of specializations. Currently, there are specializations based on the
major in which local blocks are stored. These specializations simply determine
the correct values and transpose flags to pass to the gemm call. In order for
BLAS to be used, the following conditions must be met:

• Contiguous and local data in memory

• Laid out row-major or column-major

• Elements are of BLAS-recognized data type

In STAPL, the most appropriate version of our algorithm is determined
during compilation with the help of Boost metafunctions. Through the use of
templated generic programming, we provide six functions of the same operation,
each function being specific to a certain data traversal and block-band layout.

template <typename vA, typename vB, typename vC>
struct matrix_multiply<vA, vB, vC,
typename enable_if<and_<

blas_conformable<vA, vB, vC>,
row_view<vA>,
column_view<vB>,
row_view<vC>

> >::type >
{
void operator()(vA& va, vB& vb, vC& vc)
{ // determines BLAS descriptors }

};

Figure 3: Example of specialization based on view type

In the future it may be desirable to extend the algorithms to handle local
blocks stored in other formats, such as smaller blocks. This could be accom-
plished by adding a new, more complicated specialization which would multiply
smaller blocks together. At the moment, these other layouts are handled by a
slower general implementation using innerproduct. In addition to the special-
izations based on data layout, there are also specializations by data type. gemm
has four versions: sgemm, dgemm, cgemm, and zgemm for handling float, double,
complex, and complex-double data types, respectively. If the data type is rec-
ognized by BLAS, then the appropriate version of gemm is called; otherwise the
innerproduct general algorithm is used.

5



4 Experimental Results

Our experimental setup is 8192×8192 matrix multiplication of doubles on a
cluster consisting of 40 p5-575 nodes, each with 16 Power5+ CPUs with 32 GB
of DDR2 DRAM and 2-plane HPS interconnect.

The six non-transposing algorithms that we implemented showed similar
results in cases where BLAS was called.

The difference between the general, innerproduct implementation and the
BLAS specializations was dramatic in terms of execution time. For a 8192x8192
matrix, the specialized version for RCR executed approximately 12.62 times
faster than the general implementation on one processor, and approximately
11.45 times faster on 64 processors. In our experiments, the general algorithm
was executed with optimal data locality (i.e. RCR partitioning and multiplying
with innermost loop having stride of one), in order to make full use of cache and
minimize communication. The general implementation showed similar scalabil-
ity compared with the BLAS specializations as reflected in Figure 5 (b).

As indicated in Figures 6 (a) and (b), the six implemented algorithms showed
very similar scalability and almost identical execution times. This can be ac-
counted for by the static nature of the algorithm decision and the similar phi-
losophy used within the algorithms themselves.

The two algorithms involving transpose were significantly worse than the
non-transposing versions as shown in Figure 5 (a). As these call the same al-
gorithm as the rest after the transpose, it is the transpose that is negatively
affecting the performance. These cases take increasing amounts of time as more
processors are added and are, except for when only one processor is used, sig-
nificantly worse than the general implementation. Therefore these cases are
not worth specializing, at least until a more efficient transpose routine is imple-
mented in the STAPL framework.

CPUs RCR (sec) General (sec) Speedup
1 188.09 2373.34 12.62
2 108 1349.38 12.49
4 59.82 750.92 12.55
8 38.07 466.11 12.24
16 25.74 336.73 13.08
32 19.03 208.42 10.95
64 14.96 171.2 11.45

Figure 4: Comparison of RCR (BLAS) and the general implementation
(innerproduct) in terms of execution time in seconds

6



(a) (b)

Figure 5: Comparison of (a) RCR vs. CCR which employs matrix transposition
and (b) specialized algorithm vs. innerproduct implementation

(a) (b)

Figure 6: Execution time (a) and relative speedup (b) of several matrix multi-
plication specializations on P5-cluster (doubles)

7



5 Related Work

Many parallel matrix multiplication algorithms have been developed to achieve
high performance with regard to specific matrix layouts. The creators of the
Basic Linear Algebra Subprograms library created a parallel implementation of
their general matrix multiplication algorithm included in PBLAS [2] which is lim-
ited to block-cyclic distributions. PBLAS differs from our matrix multiplication
technique in that it provides exceptional performance at the cost of working in
much fewer cases and with arguable difficulty with invocation and integration
in frameworks. STAPL is unique in that it provides an adaptive framework to
decide the best method of performing a task during both run-time and compile-
time. For example, if a specific data distribution conforms to PBLAS require-
ments, STAPL will adaptively invoke PBLAS’s matrix multiplication. If this is
not possible, it will attempt to utilize our algorithm to provide the best possi-
ble performance while simultaneously increasing the number of situations that
STAPL can handle matrix multiplication.

To cover the currently implemented data distributions in pMatrix, there ex-
ist multiple matrix multiplication algorithms for blocks or 2- and 3-dimensional
meshes. [3] mentions a number of algorithms including Cannon’s algorithm and
the DNS algorithm that work on this type of data distribution. These algo-
rithms differ from ours in that they rely on a specific block partioning whereas
our algorithm is dependent on a block-band distribution.

6 Summary

In this paper, we showed that matrix multiplication using innerproduct is far
slower than what is possible using well-known, highly optimized, third-party li-
braries specifically created for matrix multiplication, such as BLAS, thus showing
the benefit of interoperabilty and specialization. We demonstrated the increased
performance that can be achieved by using external libraries for the sequential
portion of several matrix multiplication algorithms and the benefits of inter-
operably in STAPL. We further showed that partial specialization can be used
to determine with little to no run-time overhead the most appropriate routine
based on factors determinable statically.

In the future, it would be interesting to examine the causes of poor per-
formance from STAPL’s transpose method used in two of the algorithms. An
efficient and scalable implementation of matrix transposition would allow the
last two algorithms (CCR and RRC) to achieve performance similar to the other
six.

References

[1] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas,
N. M. Amato, and L. Rauchwerger. STAPL: An adaptive, generic parallel

8



programming library for C++. In Workshop on Languages and Compilers
for Parallel Computing (LCPC), Cumberland Falls, Kentucky, Aug 2001.

[2] J. Choi, J. J. Dongarra, L. S. Ostrouchov, Petitet, A. P., D. W. Walker, and
R. C. Whaley. Design and implementation of the ScaLAPACK LU, QR, and
Cholesky factorization routines. Scientific Programming, 5(3):173–184, Fall
1996.

[3] P. S. H. Gupta. Communication efficient matrix-multiplication on hyper-
cubes. In Proc. ACM Symp. Par. Alg. Arch. (SPAA), volume 22 of Extended
version in Parallel Computing, pages 75–99, 1994.

[4] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308–
323, 1979.

[5] G. Tanase, M. Bianco, N. M. Amato, and L. Rauchwerger. The STAPL
pArray. In Proceedings of the 2007 Workshop on Memory Performance
(MEDEA), pages 73–80, Brasov, Romania, 2007.

[6] G. Tanase, C. Raman, M. Bianco, N. M. Amato, and L. Rauchwerger. As-
sociative parallel containers in STAPL. In Workshop on Languages and
Compilers for Parallel Computing (LCPC), Urbana-Champaign, 2007, to
appear.

[7] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and
L. Rauchwerger. A framework for adaptive algorithm selection in STAPL.
In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 277–288, Chicago, IL,
USA, 2005. ACM.

9


