
Jasamine Jackson

Hanan Alnizami

June 10, 2008

Rendering a 3-Dimensional Cube Applet Using Light Weight Java Graphing Library (LWJGL)

with Java Swing with NetBeans IDE 6.1

This project is a step towards the main project which is the Dance Tool application which is a learning

tool that uses 3D dancing characters to teach computer science. The characters dance moves are

determine by the code that the user enters into the program. The interface for the Dance Tool is similar to

scratch. The Dancing Tool is still a work in progress. This 3D application was created in order to better

understand the graphics and user interaction with the tool (as well as learn how to implement graphics

based on user driven input in Java).

The Layout

• The Design

First step is to create a JApplet Swing GUI Form application. The swing controls used consist of three

checkboxes, three buttons, three combo boxes and a slider bar. The checkboxes manipulate the yaw,

pitch, and roll rotation of the cube; the buttons are used to control the direction of the rotation (left and

right); the slider bar is used to manage the size of the cube; and the combo boxes that contain pre-defined

drop down menus of lighting positions, lighting color and texture.

The next step is to create and set the canvas’ bounds in which the cube is drawn. In the AppletCanvas file,

vertices are drawn into the virtual space of the canvas then connected together to form the shape of cube.

A camera is set in one position across from the cube to be able to view it at all times. A beam of light is

also set to a default position and color and manipulated according to user’s selection. A user can also

change the texture of the cube by selecting the desired pattern from a drop down menu. The canvas

application is grouped to the swing window where the cube is manipulated by the swing controls. Once a

user activates an option in the panel, the cubeApplet file reads the functionality of that option then calls

the necessary behavior from the AppletCanvas file and applies it to the cube.

Start of

Thread

Code for implementing

thread

End of Thread

• The Code

The applet includes the canvas and the GUI which provides user controls. (Figure 2 and Figure 3

respectively):

Figure 2: Cube Canvas Figure 3: User Control GUI for the 3D cube

As mentioned earlier, two files were created to achieve the task of rendering the cube: AppletCanvas and

CubeApplet. Below are diagrams that explain the procedure:

• AppletCanvas.java Class File Flow Chart

Calling the thread function:

This thread enables the canvas and the applet to function at the same time.

Initializing the Camera and Enabling Depth, Texture, and Light:

Start of

Initialization

function

1.Reset the Projection Matrix

2. Define Perspective

3. “Where is the eye”: define eye

position. define target to look at,

define which way is up

4. Select the Modelview Matrix(controls

model orientation)

5.Enable depth, texture, and lighting

6. Declare a texture Image as an instance

of the GLImage object

End of

Initialization

Start of Paint

 Function

Select the Projection

Matrix (controls

perspective)

Conditional Statement:

If the user doesn't change

the lighting position and color, then

the light position value and color value

will have a default value which will

used for the setLight function.

Conditional Statement:

If the user does change

the lighting position and color, then

the light position value and color value

will have a default value which will

used for the setLight function.

Execute the rotateCube

function which controls

the yaw, pitch, and roll

rotation as well as rotation

to the left and right.

Conditional Statement:

If the user changes the texture, then

the texture image will be set

according to user's input. If not, then

then the texture image will be set

according to a default value.

Execute the renderCube

function which will draw

cube in a 3D environment;

insert an exception handler

End of Paint

 Function

Painting the Canvas:

This function will draw the cube according the user's input. This function draws the rotating textured cube

by drawing the cube frame by frame.

Rotate Cube Function:

This function controls the rotation of the cube.

Start of Rotate

Function

If the user doesn't choose

rotation, then the cube

doesn't move

If the user selects the yaw

option and chooses the left

then yawRotation-=floating

point number else

yawRotation+=floating point

number.

If the user selects the pitch

option and chooses the left

then pitchRotation-=floating

point number else

pitchRotation+=floating point

number.

If the user selects the roll

option and chooses the left

then rollRotation-=floating

point number else

rollRotation+=floating point

number.

End of Rotate

Function

Render Cube Function:

This function creates the cube in a 3D environment.

Start Render Cube

Function

1. First step is to push the current

 matrix stack:

 1.1 Bind the texture to the surface

 of the cube

 1.2 Create the scale for the cube

 1.3 Multiply current matrix by

 rotation matrix

 1.4 Create the coordinates

 necessary to apply a 2D texture

 to the 3D face on the cube;

 create the coordinates that is

 necessary to construct the cube in

 3D environment

End of Render Cube

Function

Texture Image

This step consists of two functions. One function loads the image from a file and the other stores pixels

passed in a byte buffer in which at the end applies the images where they are being called in the program.

• CubeApplet.java Class Flow Chart

This file processes the user's input from the GUI. The swing components for the GUI consist of:

1. Three check boxes: yaw, pitch, roll

2. Three buttons: rotate left, rotate right, stop

3. slider bar: manipulates size

4. Three combo boxes: texture, lighting position, and lighting color

Check Box Control:

If the user chooses the yaw option, then yawRotation = true. However, the cube won't rotate

unless the user selects rotate left or rotate right. The same logic goes for the pitch and roll options.

Button Control:

If the user chooses the rotate left option, then the yawRotation = true and the direction set to left. The

same logic goes for the rotate right button.

Slider Bar:

If the user manipulates the slider bar, then the size manipulation=true and the scale is manipulated

according to the value of the slider bar.

Combo Box Control:

For the texture combo box control, if the user doesn't choose an option from the texture box, then the

default texture is used. Else if the user does pick texture, the index position is set to the image which is

loaded from a file and the pixels are stored in a byte buffer.

For the light position combo box, if the user doesn't choose an option from the light position box, then the

light position is set at a default position. If the user does change the position, then the light position is set

according to the user's input. Logic goes for the light color.

Conclusion

As a form of preparing for the big picture, that is making the CSDT, the cube rendering project is

one that introduces us to the idea of merging to palettes in one and manipulating one through the

other. The project teaches a person how to create a canvas in space then paint in a 3Dimensional

figure, in this case a cube, and setting up an eye of a camera and adjusting its position in a way to

capture the image of that cube in the open space. The trick is to set bounds, locations, and

characteristics of the canvas and its shapes and light beams then tell the eye to look towards that

direction. This project will be followed with one that follows the same steps with some tweaks.

In the upcoming project, the goal will be to expand our horizons and try to think of creating three

panels on one platform in which each panel does a specific job, and at the end affects the whole

picture. First, there will be a panel of pieces of different shapes that already have some coding

built into them. The panel or little window under that will be an open space in which those little

pieces of shapes can be dragged and dropped. The third panel will be the space in which those

shapes will appear according to the shapes being dropped into the second panel. After this

mission is accomplished, then we should be set to start the primary project which is the dance

tool.

Acknowledgments

A word of thank you and appreciation goes to our mentor Dr. Tiffany Barnes and Evie Powell

for their guidance through this process.

References:

 The tutorial that was used to draw the cube:

http://www.morrowland.com/apron/tutorials/gl/gl_rotating_cube.php

The tutorial that was used to create the GUI:

http://java.sun.com/docs/books/tutorial/uiswing/learn/index.html

