
Working with the CONSUL Middleware to Create an
Instrumented Construction Site Application

Kelly Chang
Department of Computer Science

University of California at Santa Cruz
kpchang@ucsc.edu

1. INTRODUCTION
Research regarding mobile ad-hoc
networking has expanded over the past few
years. Ad-hoc networks are similar to
normal wireless networks in several ways,
including the technology used (e.g. the
802.11 protocol). The critical differentiating
factor of an ad-hoc network from a normal
wireless network is the lack of a fixed
network infrastructure; in an ad-hoc
network, communication links are formed
between devices within wireless
communication range. When the devices are
mobile, this lack of infrastructure makes it
very difficult for an application programmer
to create an application for an ad-hoc
network; the network topology changes
rapidly in response to the mobility of nodes,
making it impractical to know in advance
the location and nature of resources in the
network. Accessing information across a
changing network is one of the key pieces in
an application for mobile ad-hoc networks.
An application running on a single node in
the network isn’t as powerful as an
application that spans the entire network;
therefore it is important that programmers
are able to create applications that have that
capability.

To aid in the development of applications
for ad-hoc networks, a middleware is often
used. A middleware is a library that supports
a collection of low-level functions. These
functions can be used by the programmer
through the simplified interface provided by
the middleware. CONtext Sensing User

Library, more often referred to as CONSUL,
is one such middleware. [1] CONSUL
covers all of the details of acquiring
information from the network, thereby
allowing the application programmer to
focus on the application. Our goal is to
demonstrate that the use of CONSUL in
application development involving ad-hoc
networks is easier than developing an
application without it. To show this, the
project will use CONSUL in the
development of an ad-hoc network
application designed to support management
of an instrumented construction site.

2. BACKGROUND
Ad-hoc sensor networks may support a
number of useful applications, but it can be
difficult to develop an application that uses
them. Sensor networks are dynamic and
constantly evolving. Nodes often enter and
leave the network, making it difficult to
know if a certain node exists within the
network at any given time. This makes
issues such as mobility, uncertainty, node
discovery, and routing very important when
it comes to sensor networks. [2] There are
also the issues of power and resource
constraints. The sensors used in the
networks do not plug into an electrical outlet
and instead run off of batteries, which
greatly limits the options available to the
programmer. In addition to their power
supply being limited, the sensors also have a
restricted amount of processing power and
memory. [3]

mailto:kpchang@ucsc.edu

Several middleware solutions have been
designed with these problems in mind and
can be used to aid the programmer with
application development. Some of these
solutions include the context toolkit,
CONSUL, EgoSpaces, and Agilla. For
brevity, EgoSpaces [4] and Agilla [5] will
not be discussed.

2.1. THE CONTEXT TOOLKIT
The context toolkit [6] uses context widgets
to provide the application with information
from the networked sensors. These context
widgets are similar to normal GUI widgets.
The context widgets hide the complexity of
the actual sensors used and abstract the
information to suit the expected needs of
applications. They provide reusable and
customizable building blocks that manage
sensing of a particular sensor or group of
sensors. The developer includes these
context widgets into the application,
allowing the application to access the
information on the sensors easily.

Despite all of its pros, the context toolkit has
two very large cons: it has a large and
complex overhead, and it has limited
aggregation. As stated earlier, sensor
networks are often power and resource
constrained. The larger and more complex
of a middleware means that the actual
application running on the sensors will have
to be that much smaller. Aggregation is also
a key issue because it is how data is
collected from the network and obtained by
the application. The context toolkit
needlessly limits the types of aggregations it
is able to perform by moving the context
aggregation functionality away from the
client and into the middleware. [1]

2.2. CONSUL
CONSUL uses a simplified interface to
allow application developers access to
context information. It is designed to give

novice programmers the ability to create
context-aware applications. Unlike the
context toolkit, CONSUL has less overhead
and more options for data aggregation.

CONSUL handles sensing by allowing
software to interface with sensors connected
to a host. CONSUL provides a unified
interface to sensors through the use of
monitors. Any kind of sensor can be
interacted with simply by using the
“getValue” or “setValue” methods of a
CONSUL monitor. Since there are lots of
physical sensors out there, each with a
different way of accessing information, the
use of CONSUL monitors can make
programming easier since developers do not
need to know the specific implementation
details of each physical device in order to
access its data. CONSUL also simplifies the
process of discovering the sensors in the
network. CONSUL provides a
MonitorRegistry that automatically
discovers and manages a collection of
CONSUL monitors that are available in the
network; applications simply ask the
MonitorRegistry for a monitor by a
descriptive name.

Instead of including an entire widget, like
the programmer would have to do with the
context toolkit, the only thing needed to
incorporate CONSUL into the application
are a few lines of code that are used by the
application to get the monitor value.
CONSUL also provides a library for the
types of monitor values that are typically
provided by physical sensors. Application
developers are able to add new monitor
values to the library as needed, thereby
allowing for additional types of data and
sensors to be considered and for new types
of aggregation of data values to be
incorporated. [1]

3. DEVELOPING THE
CONSTRUCTION SITE APPLICATION
In a real life construction site, both the
workers and supervisors need to be advised
on the status of the materials and equipment
for any safety hazards, malfunctions and
shortages. Our application would interface
with devices that would keep these people
aware of any possible problems or delays.
Motes could be deployed across the
construction site, providing both the workers
and the supervisors with information on
materials and equipment. For example, if
there were a possible hazardous chemical
leak, chemical sensors would be able to
detect the leak and inform the workers and
the supervisors of it. They would then be
able guide anyone in the surrounding area to
evacuate the site safely.

Our original plan for the construction site
application was to create a simulation using
iRobot Create robots and the motes. The
iRobot Create would serve as a worker or
piece of equipment, and the motes would
function as sensors attached to equipment
and materials. Our goal for this project is to
develop CONSUL monitors for the sensors
to support the construction site application.

Extensive research regarding ad-hoc
networks [2, 3], middlewares [1, 4, 5, 6] as
well as TinyOS [12] and NesC [13, 14] was
done prior to any actual development.

3.1. WORKING WITH TINYOS AND
NESC
Working with the motes proved to be a
difficult task. The motes run on an operating
system called TinyOS, which is
programmed using a language called NesC.
The reason behind using a specially
designed operating system and language on
the motes is due to their power and resource
constraints. TinyOS is aptly named as it is
specifically designed to run on “networked

sensors with minimal hardware
requirements”. [7]

The unfortunate consequence of TinyOS and
NesC being specifically designed for the
motes is that the applications for the motes
must also be programmed using NesC. NesC
is similar to C, but it uses a different
compiler, making it a language unique to
TinyOS. [7] The TinyOS tutorials [8]
provided some guidance for programming in
NesC, but adjusting to the language can be a
time consuming process.

3.2. CREATING A CONSUL MONITOR
To create a CONSUL monitor for the motes
we need to extend the AbstractMonitor class
and implement the getvalue and setValue
methods. Specifically, the getValue method
would have to be implemented such that it
uses the physical sensing devices native
method for getting values from its sensors.
This would mean getting values for the
temperature, humidity and light sensors as
they are the most common sensors on the
motes we had.

We began by determining how to best
access the sensors on them. The TinyOS
developers provided sample applications
with all of the operating system’s
distributions. Two of these applications
sampled one sensor on the mote, a generic
DemoSensor, and showed the values either
through the mote’s LEDs or a GUI
application, also included in the TinyOS
distribution. Through these applications and
the accompanying tutorials [8] we learned
how to access the sensors.

Our next step was to direct the output to the
terminal for debugging and for application
display purposes. The first approach taken
for this was through the printf command.
However, unlike languages such as C and
Java, implementation of printf in NesC is

more than simply calling printf. The printf
client must be wired to the application, and
the buffer needs to be flushed in order to
actually view anything. A few fruitless
attempts were made at incorporating the
printf command into the sensing application,
including one which required very little
wiring. [11]

After our unsuccessful tries with the printf
command, we switched to using the serial
port. This turned out to be a much less
complicated approach than the printf
command. The application still needed to be
wired to the serial port client; however,
documentation for this process was much
more plentiful and straightforward than the
printf command. [8]

From here we were able to view the various
values on the motes as output to the
terminal. Work began on trying to adapt this
NesC application into a NesC client that
could be called from the Java client to return
the value on the sensors. The Java client
would act as a monitor and have the
getValue and setValue methods within it.
The getValue method would call the NesC
client, which would return the value from
the specified sensor on the motes in the
network.

4. FUTURE WORK
Ultimately we would like to be able to
compare the development process between
using CONSUL and using QueryME, a
middleware created by Dr. Payton. [9] In
order for this to be possible, however, we

must first create a monitor that interfaces
with the motes by extending the Abstract
Monitor. We hope to accomplish this by
completing our NesC client application
which will return the values from the motes’
sensors to an outside monitor programmed
in Java. This way we will be able to avoid
porting the entire middleware to NesC.

Once this part is completed we will be able
to test the monitors using the application
created by Robert Goodrich during the REU
at UNCC. [10] Providing that the
application and motes work together
successfully, we will then be able to rewrite
the application using QueryME. QueryME is
a more sophisticated middleware. It uses
CONSUL to provide a unified interface to
sensors while simultaneously providing
additional functions and features for the
application programmer. [9]

We are also looking to deploy the
application and a similar sensing network in
a real construction environment. This system
would, theoretically, provide the workers
and supervisors with information on the
condition of the material, possible
equipment failures and safety hazards.

5. CONCLUSION
A significant amount of time was spent
researching background information on
mobile ad-hoc networks, sensor networks,
middlewares, TinyOS, and NesC. Despite
this, there were still a few issues with
adjusting to programming in NesC and
debugging applications. Given more time a
testable application could have been
constructed, and we already have a general
outline of the steps needed to complete this
project. Much was learned about these
topics as well as the research experience
itself, and this alone was well worth the time
and effort.

6. REFERNCES
[1] G. Hackmann, C. Julien, J. Payton, and

G.-C. Roman. “Supporting
Generalized Context Interactions,”
Proceedings of the 4th International
Workshop on Software Engineering
and Middleware, co-located with
ASE'04, Linz, Austria, T. Gschwind
and c. Mascolo (editors), Lecture
Notes in Computer Science 3437, pp.
91-106, March 2005.

[2] C.-Y. Chong and S. P. Kumar. “Sensor
Networks: Evolution, Opportunities,
and Challenges,” Proceedings of the
IEEE, vol. 91, no. 8, pp. 1247-1256,
Aug. 2003.

[3] J. Blumenthal, M. Handy, F.
Golatowski, M. Haase, and D.
Timmermann. “Wireless Sensor
Networks – New Challenges in
Software Engineering,” Emerging
Technologies and Factory
Automation, 2003. Proceedings.
ETFA ’03. IEEE Conference, vol. 1,
pp. 551-556, Sept. 2003.

[4] C. Julien and G.-C. Roman. “Egocentric
Context-Aware Programming in Ad
Hoc Mobile Environments,” In Proc.
of 10th Int'l Symposium on the
Foundations of Software
Engineering, pp. 21-30, Nov. 2002

[5] C.-L. Fok, G.-C. Roman, and C. Lu.
"Mobile Agent Middleware for
Sensor Networks: An Application
Case Study," Fourth International
Symposium on Information
Processing in Sensor Networks,
2005. IPSN 2005, pp. 382-387, April
2005.

[6] D. Salber, A. Dey, and G. Abowd. “The
Context Toolkit: Aiding the
Development of
Context-Aware Applications,”
Proceedings of the SIGCHI
Conference on Human Factors in
Computing Systems: the CHI Is the

Limit (CHI '99), pp. 434-441, May
1999.

[7] “TinyOS FAQ,” [Online]. Available:
http://www.tinyos.net/faq.html.
[Accessed: Aug. 28, 2008].

[8] “TinyOS Tutorials,” May 16, 2008.
[Online] Available:
http://docs.tinyos.net/index.php/Tiny
OS_Tutorials. [Accessed: Aug. 28,
2008].

[9] J. Payton. “A Query-Centered
Perspective on Supporting Context
Awareness in Mobile Ad Hoc
Networks,” pp. 1-20, March 2006.

[10] R. Goodrich. “Developing Instrumented
Construction Site Applications using
the CONSUL Middleware,” 2008
Research Experience for
Undergraduates. REU 2008, pp. 1-2,
Aug 2008.

[11] “Modified printf tar file/thread,”
[Online] Available: http://www.mail-
archive.com/tinyos-
help@millenium.berkeley.edu/msg1
5182.html. [Accessed Aug. 15,
2008].

[12] P. Levis. “TinyOS Programming,”
June 28, 2006. [Online] Available:
http://csl.stanford.edu/~pal/pubs/tiny
os-programming.pdf. [Accessed July
14, 2008].

[13] D. Gay, P. Levis, R.v. Behren, M.
Welsh, E. Brewer, and D. Culler.
“The nesC Language: A Holistic
Approach to Network Embedded
Systems,” [Online] Available: http://
www.cs.berkeley.edu/~pal/pubs/nesc
.pdf. [Accessed July 14, 2008].

[14] D. Gay, P. Levis, D. Culler, and E.
Brewer. “nesC 1.2 Language
Reference Manual,” Aug 2005.

http://www.cs.berkeley.edu/~pal/pubs/nesc.pdf
http://www.cs.berkeley.edu/~pal/pubs/nesc.pdf
http://www.cs.berkeley.edu/~pal/pubs/nesc.pdf
http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf
http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf
http://www.mail-archive.com/tinyos-help@millenium.berkeley.edu/msg15182.html
http://www.mail-archive.com/tinyos-help@millenium.berkeley.edu/msg15182.html
http://www.mail-archive.com/tinyos-help@millenium.berkeley.edu/msg15182.html
http://docs.tinyos.net/index.php/TinyOS_Tutorials
http://docs.tinyos.net/index.php/TinyOS_Tutorials
http://www.tinyos.net/faq.html

