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Abstract

Economic decisions can benefit greatly from accurate predictions of market
prices, but making such predictions is a difficult problem and an area of active
research. In this paper, we present and compare several techniques for predicting
market prices that we have employed in the Trading Agent Competition Supply
Chain Management (TAC SCM) Prediction Challenge. These strategies include
simple heuristics and various machine learning approaches, such as simple percep-
trons and support vector regression. We show that the heuristic methods are very
good, especially for predicting current prices, but that the machine learning tech-
niques may be more appropriate for future price predictions.

1 Introduction

A manufacturer that procures raw materials, converts them into final products, and
sells the products to customers is said to manage a supply chain. Successful supply
chain management in a competitive market requires accurately predicting the prices of
raw materials and the prices at which final products will be sold. The Trading Agent
Competition Supply Chain Management (TAC SCM) game simulates such a market,
and the TAC SCM Prediction Challenge, a new competition in 2007, was designed to
provide a controlled environment for researching how such predictions can be made.

In the TAC SCM game, software agents act as computer manufacturers that compete
to win orders from customers, purchase components from suppliers, and produce and
deliver finished products to customers. The customers send requests for quotes (RFQs)
for computers to all the participating agents, and the agents bid prices on those RFQs
in a sealed-bid reverse auction. In order to maximize its profit relative to other agents,
an agent should be able to determine the price at which each RFQ will be ordered. Fur-
thermore, the agent sends RFQs to suppliers to purchase components, and predictions
of the prices at which those RFQs will be offered are essential to deciding not only which
components to procure from which suppliers and when, but also which customer RFQs
to bid on and for how much.
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The importance of these predictions has led to the creation of the TAC SCM Pre-
diction Challenge, which offers a sandbox for experimenting with different prediction
techniques as well as a framework for evaluating those techniques, free of the intricate
complexities of the rest of the SCM game. Here we present the methods we have im-
plemented and compare their effectiveness. The paper is organized as follows. Section 2
describes TAC SCM and the Prediction Challenge in greater detail, and reviews related
prior work. Section 3 and Section 4 discuss our work on computer and component price
predictions, respectively. Each section presents first the sources of information available
to us, then the different prediction techniques we have attempted, and finally the re-
sults we have obtained. Section 5 shows the results of the final round in the Prediction
Challenge. Finally, we interpret our results and conclude the paper in Section 6.

2 Background

2.1 The TAC SCM Game

In the TAC SCM game,1 six computer manufacturers compete to produce and sell 16
different types of computers or stock keeping units (SKUs), each requiring a unique
combination of 10 different kinds of CPU, motherboard, memory, and hard disk com-
ponents. Each kind of component may be supplied by up to two different suppliers,
who may be thought of as simpler versions of the agents that must also make offers
in response to agent RFQs, produce components, and deliver ordered components to
agents. The suppliers attempt to maximize their revenue and offer prices based on the
ratio of demand to supply.

Each game lasts for 220 simulated days. Every day, the agent receives a set of RFQs
from a single conglomeration of customers. Each RFQ consists of a computer type,
the quantity desired, the due date, a reserve price indicating the highest price that the
customers are willing to pay, and a penalty that will be exacted each day the delivery
is late. Each of these properties is chosen uniformly at random from an interval.

The RFQ that an agent sends to a supplier is similar to a customer RFQ. It consists
of a component type, the quantity desired, the due date, and a reserve price, which may
be zero if the agent does not wish to constrain the price. On the next day, the supplier
to whom the RFQ was sent sends back at least one offer. Each offer may match the
RFQ exactly, in which case it would be the only one, or may be a partial offer with a
reduced quantity or an earliest complete offer with a later due date. The SCM agent
then decides which offers to take and sends orders to the suppliers on the same day.

The agents themselves issue offers to customers in response to RFQs received on the
same day. They must offer prices without knowing the prices that other agents have
offered. On the following day, the customers awards for each RFQ the agent that offered
the lowest price with an order, and the winning agent can then deliver that order and

1The full specification for this game is available at http://www.sics.se/tac/page.php?id=14
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receive payment.

2.2 The Prediction Challenge

In the TAC SCM Prediction Challenge,2 the agent’s task is to predict computer and
component prices on the behalf of an SCM agent. The SCM agent, called PAgent, is
an agent designed by the creators of the challenge with simple but reasonable behavior
and that wins a moderate number of customer orders. The predictions are not used
by PAgent in any way. In fact, during the competition, SCM game logs with PAgent
participating are read, and the prediction agent receives only PAgent’s incoming and
outgoing messages, day by day. Predictions must be made for the current day before
the next day’s messages are received.

Four kinds of predictions must be made each day. They are:

1. The price at which each customer RFQ received today will be ordered tomorrow,

2. The median order price for each SKU 20 days from today,

3. The price that will be offered tomorrow for each supplier RFQ that PAgent sent
today, and

4. The price that will be offered for each supplier RFQ that PAgent will send 20 days
from today.

Once the predictions are made, they are compared to the actual prices and the root
mean square (RMS) error in each prediction category is calculated for the current day.
In the error calculation, each price is divided by the base price for that component or
SKU. Customer RFQs that do not result in an order and supplier RFQs that result
in partial, earliest-complete, or no offers are excluded. RMS errors are also calculated
for the entire game and for all the games. The prediction agent makes predictions for
a total of 48 games, divided into three sets, in each of which PAgent plays 16 games
against the same competitors.

2.3 Prior Work

Although the Prediction Challenge was new in 2007, researchers have been interested
in price predictions for the SCM game itself, and a variety of approaches have been
studied. However, most work has focused on determining the best price at which to bid
for computers, or the probability of winning a bid at a given price. Simple online and
historical learning techniques, as well as fixed strategies, were examined and compared
in [2], which shows that dynamic pricing strategies perform better than fixed bids. A
naive Bayes approach that classifies each bid as winning or losing and then derives the

2More information about the challenge can be found at http://www.cs.utexas.edu/∼TacTex/
PredictionChallenge/

3



price-probability function was developed in [5] and is similar to the machine learning
techniques presented here. Kiekintveld et. al. [3] used a nearest neighbors approach
that combined online and historical learning in the 2005 version of Deep Maize, an
agent in TAC SCM. Pardoe and Stone [6] explored several machine learning techniques
for predicting the probability of winning a bid, including support vector machines, naive
Bayes, nearest neighbors, regression trees, and boosted decision stumps. They rejected
the first three based on initial testing and showed that the latter two performed best.
However, in a later version of TacTex, a successful agent in TAC SCM 2006, they adapted
instead a particle filter as the price-probability model for the customer side [7]. Overall,
the prediction of component prices, which is essential to both procurement and bidding
decisions in TAC SCM, has not been explored in depth, and this work contributes to
research in this area.

3 Computer Price Predictions

3.1 Inputs

In predicting current and future computer prices, several sources of information are
available. Every day, the prediction agent receives the current day’s customer RFQs,
each with a set of properties, and a price report, which consists of the previous day’s
highest and lowest order price for each SKU. The agent also knows all of PAgent’s
past offers to customers, and which ones were awarded with orders. Every 20 days,
the prediction agent receives a market report that includes the quantity of each SKU
requested and ordered and the average order price for each SKU during the 20-day
period.

3.2 Methods

3.2.1 A Simple Heuristic

The first approach we attempted was a simple heuristic adopted in Botticelli [1], Brown
University’s TAC SCM agent, as the computer prices model. This model predicts the
probability of winning an offer given the bid price for that offer by using the price report
and the agent’s past offers. It plots the following d + 2 points for each SKU every day
and calculates a least-squares regression line for them:

• The highest and lowest order prices for that SKU yesterday, plotted respectively
at probability 0 and probability 1, and

• Botticelli’s daily average offer price for that SKU for each of the past d days, each
plotted at the ratio of offers won to offers issued on that day.

The justification for the first two points is that bids with lower prices are more likely
to be won than bids with higher prices. The regression line represents the complementary
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cumulative distribution function for the winning price, since the probability of winning
an offer at a given price is the probability that the true winning price is greater than or
equal to that price. However, we only need a single number for the Prediction Challenge,
the actual winning price, which may be predicted as the expected value of the winning
price. We obtained this number by taking the average of the price at probability 1 and
the price at probability 0 on the regression line.

3.2.2 A Perceptron Approach

Next, we attempted a simple perceptron approach. The idea is to learn to predict the
winning price from PAgent’s past offers to customers and which ones became orders.
Each offer corresponds to a customer RFQ, which has a set of properties that we used
as the input values or features for the perceptron. We also know the price of each offer
and whether it was won or lost. This information gives upper and lower bounds on the
true winning price, since it should be lower than the price of any offer that was lost and
greater than or equal to the price of any offer that was won. The goal is to learn the
weights that would result in an output that is on the right side of the offer price for each
inequality in the training data. That is, we aim to learn weights (w1, w2, . . . , wm) and
bias b such that:

f11 f12 . . . f1m 1
f21 f22 . . . f2m 1
...

...
. . .

...
...

fn1 fn2 . . . fnm 1




w1

w2
...

wm

b


<
≥
...
<


p1

p2
...

pn


offer lost
offer won

...
offer lost

(1)

where n is the number of training instances (past customer offers), m is the number of
features (five properties of the RFQ), fij is the jth feature in the ith training instance,
and pi is the offer price in the ith training instance. The final column indicates whether
each offer was won or lost.

After some experimentation, we settled on the following update rule, where yi is the
perceptron’s output for the ith training instance and α is the learning rate:

∆wj ,∆b =


+αfij if yi < pi and the ith offer was won
−αfij if yi ≥ pi and the ith offer was lost
0 otherwise.

(2)

The learning rate α decays as the right half of a Gaussian with µ = 0 and σ = 1√
2π

, so
that it is 1 at time 0. The decaying learning rate is necessary to force the weights to
converge.

Since the order in which the perceptron goes through the training data affects the
final weights, we start every day with 10 copies of the weights learned so far, and update
each copy using the current day’s customer offers presented in a different random order.
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After all 10 copies have been updated, we take their average to be the final weights for
that day. The order price of a customer RFQ received on the current day is then
predicted as ~f · ~w + b. The predictions made by the perceptron turned out to be
inexplicably bad for any reasonable number of iterations through the training data,
so this approach is not included in the Results section.

3.2.3 Support Vector Regression

Attempting the perceptron approach was not completely fruitless, however, as it yielded
another idea. The fact that the magnitudes of the perceptron’s weights seemed too large
motivated us to solve for ~w and b in (1) using mathematical programming techniques
and minimizing the magnitude of the weights vector. Because the quadratic program is
not feasible on every day, we introduce slack variables ςi into the problem, so that the
quadratic program on each day becomes:

minimize ‖~w‖2 +
n∑

i=1

ςi

subject to


~fi · ~w + b + ςi ≥ pi for each offer won
~fj · ~w + b− ςj < pj for each offer lost
ςi ≥ 0

(3)

This approach is a variation of support vector regression, which is described in greater
detail in [8]. We use only the current day’s customer orders, because using past days’
data not only made the predictions worse but also increased the size of the problem very
quickly, since there are about 200 customer RFQs every day.

We also added more features to the quadratic program, such as the past, current, and
predicted future customer demand, for which we used Deep Maize’s Bayesian model.3

The SKUs are divided into three market segments (low, mid, and high), and the num-
ber of RFQs in each market segment is determined by a Poisson distribution whose
parameter varies according to a random walk. The Bayesian model predicts the number
of RFQs in each market segment on any day in the game given past observations [4].
Finally, we added as features the sum of the costs of the components required for the
SKU as predicted by the supplier-side model described in Section 4.2.1, and the average
of the highest and lowest order prices for the SKU for a number of past days.

3.3 Results

Table 1 summarizes our results. The overall RMS errors for all 48 games in the Prediction
Challenge qualifying round (on which we performed most of our tests) is shown for each
strategy. The errors under “Current Prices” are for predictions of the prices on the

3Deep Maize has released their source code for this approach at http://www.sics.se/tac/

showagents.php?id=19
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Method Current Prices Future Prices
Sample 0.04882 0.10654

Heuristic 0.04665 0.10170
SVR 0.05463 0.13132

Table 1: RMS errors for various computer prices prediction strategies.

next day, and those under “Future Prices” are for predictions of the prices 20 days from
the current day. The “sample” strategy is the default given to us by the designers of
the challenge, which simply predicts the price as the average of yesterday’s highest and
lowest order prices for the RFQ’s SKU. For support vector regression (SVR), we used
only the properties of the RFQ and the last 5 days’ price reports as features, as the
other features seemed to make predictions worse.

4 Component Price Predictions

4.1 Inputs

The information available for predicting current and future component prices include
information that is known daily and information from the market report received every
20 days. Every day, the prediction agent receives supplier offers in response to PAgent’s
supplier RFQs on the previous day, and also knows all the past supplier offers received.
Every 20 days, the prediction agent finds out the quantity of each component type
ordered and delivered, the mean offer price for each component per SKU, and the mean
production capacity for each supplier product line during the 20-day period. A supplier
product line is a supplier-component pair, and each supplier product line maintains a
separate production capacity.

4.2 Methods

4.2.1 Botticelli’s Model

Again, we started with Botticelli’s supplier-side model. In this model, each day’s supplier
offers are used to predict the prices of components. Each known offer price is stored and
indexed by the component, the supplier, and the due date for that offer. Only the prices
from the current day’s offers are stored, so that we only use the most recent information.
Then, to predict the offer price for a supplier RFQ sent on the current day, we perform
the following steps:

1. Estimate the price as the known price for that RFQ’s component, supplier, and
the nearest due date for which data is available,
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2. Estimate the supplier’s available capacity for the RFQ by using the supplier pricing
formula and the estimated price given by Step 1,

3. Adjust the estimated capacity by adding to it the difference between the quantity
offered and the quantity ordered on the current day of that component from the
current day to the RFQ’s due date, and finally

4. Re-estimate the offer price by using the supplier pricing formula and the adjusted
available capacity estimate obtained in Step 3.

The supplier pricing formula, known as Equation (10) in the TAC SCM specifications,
determines the offer price on a given day d for a component c due on day d + i + 1, as
follows:

Pd,i = P base
c

(
1− δ

(
Cavl

d,i

iCac
d

))
(4)

where

• Pd,i is the offer price,

• P base
c is the base price for component c, given by the TAC SCM specifications,

• δ is the supplier price discount factor, chosen to be 0.5,

• Cac
d is the actual capacity for the supplier product line on day d, determined each

day by a mean-reverting random walk, and

• Cavl
d,i is the capacity available to produce the component, which is the inventory

plus the free capacity (the actual capacity less the capacity that the supplier has
offered or committed on that day) on every day between day d and day d + i,
minus any capacity needed between day d and day d + i to satisfy requests due
after d + i + 1.

When calculating Cavl
d,i , suppliers assume that all offers sent on day d will become com-

mitted. Therefore, Step 3 (adjusting the estimated Cavl
d,i ) makes sense because in deter-

mining prices on the current day, the suppliers believed that all offers would result in
orders, whereas we know which offers we decided to take and thus can better estimate
the available capacity the suppliers will use to calculate prices for the following day.
We always take Cac

d to be the supplier’s nominal capacity, which is the mean that the
random walk determining the actual capacity reverts to.

4.2.2 A Perceptron Approach

The perceptron approach for component prices is almost identical to that for computer
prices, except that there is a separate perceptron for each type of component and we
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have equalities instead of inequalities:
f11 f12 . . . f1m 1
f21 f22 . . . f2m 1
...

...
. . .

...
...

fn1 fn2 . . . fnm 1




w1

w2
...

wm

b

 =


p1

p2
...

pn

 (5)

and the perceptron update rule is:

∆wj ,∆b =


+αfij if yi < pi

−αfij if yi > pi

0 otherwise.
(6)

4.2.3 Least Squares Regression

The simplest way to solve for ~w and b in (5) is just to find a least-squares solution.
However, while this method worked for some games, it was very bad for others, and so
is not included in the Results section.

4.2.4 Support Vector Regression

The support vector regression approach is almost identical to the one used for computer
prices, except that once again, we calculate the weights for each component separately
and have equalities instead of inequalities. The optimization problem is:

minimize ‖~w‖2 +
n∑

i=1

ς2
i

subject to ~fi · ~w + b + ςi = pi

(7)

We use the features of the RFQ, as well as features indicating market conditions,
such as past, current, and future customer demand, past prices for that component, the
mean past actual capacity for that supplier product line from the most recently received
market report, and the estimated available capacity as described in Section 4.2.6. We
also include as a feature the future supplier actual capacity predicted using a nearest
neighbors approach.

4.2.5 k-Nearest Neighbors

Another approach we attempted was k-nearest neighbors. In this method, we store all
supplier offers and predict the price for an RFQ as a weighted average of the prices of the
k most similar supplier offers. Similarity is measured by the Euclidean distance between
the features for the RFQ (including market conditions) and those for the offer. The
weights for the k neighbors are inversely proportional to their distances and normalized.
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Method Current Prices Future Prices
Sample 0.15428 0.16324

Heuristic 0.04163 0.10067
Perceptron 0.18442 0.14871

SVR 0.05855 0.09674
k-NN 0.04653 0.10338

Capacity 0.17664 0.18271

Table 2: RMS errors for various component prices prediction strategies.

4.2.6 Modeling the Available Capacity

Yet another approach, motivated by the supplier pricing formula in (4), is to model
the available capacity for each supplier product line on each day. To do this, we start
with the supplier’s nominal capacity divided by the number of SCM agents in the game,
which is approximately the amount of the supplier product line’s production capacity
that is available to PAgent at the beginning of the game. Then, for each supplier order
sent on the current day that is for this supplier-component pair, we “schedule” the
quantity ordered greedily from the next day (when the supplier can start producing
for the order) forward by decrementing each day’s estimated available capacity for that
supplier product line by the maximum amount possible of the quantity left to satisfy.
The estimated available capacity is then used in (4) to predict the price for an RFQ,
with the actual capacity estimated as the supplier’s nominal capacity divided by the
number of SCM agents.

4.3 Results

Table 2 summarizes our results for component price predictions. Again, the RMS errors
are for the games in the qualifying round. The “sample” strategy simply predicts the
price for any RFQ to be 0.7 times the base price of the component. For the perceptron
approach, we use only the properties of the RFQ as the features. For support vector
regression (SVR) and k-nearest neighbors (k-NN), we let k = 5, and use the properties of
the RFQ as well as the past mean supplier production capacity from the latest market
report and the average component prices for the past 5 days. Also, we use only the
current and previous days’ supplier offers for SVR, and we use only the supplier offers
from the current game for k-NN. These parameters all seemed to make performance the
best.
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Current Computer Prices Future Computer Prices
Rank Team RMS Error Rank Team RMS Error

1 TacTex 0.04554 1 TacTex 0.09156
2 DeepMaize 0.04682 2 DeepMaize 0.09586
3 Botticelli 0.04714 3 Botticelli 0.10238
4 Kshitij 0.04873 4 Kshitij 0.11094
Current Component Prices Future Component Prices

Rank Team RMS Error Rank Team RMS Error
1 DeepMaize 0.03919 1 DeepMaize 0.09427
2 Botticelli 0.04168 2 Botticelli 0.09700
3 TacTex 0.04284 3 TacTex 0.10338
4 Kshitij 0.13333 4 Kshitij 0.13886

Table 3: RMS errors for all teams and categories in the final round.

5 Final Round Results

In the final round of the Prediction Challenge, we decided to use the simple heuristics
for both current and future computer price predictions, and only current component
price predictions. For future component prices, we used support vector regression. The
results of the final round for all participating teams are summarized in Table 3. Our
team was Botticelli.

6 Conclusion

For all the price prediction tasks, the simple methods adapted from Botticelli work
very well. The more sophisticated machine learning techniques are surprisingly worse
especially for predictions of current prices, although not much worse. This suggests that
in the TAC SCM scenario, just using the recent prices, which both of the simple methods
do, is better than trying to generalize the relationship between market conditions and
prices. In fact, for both computer and component prices, attempting to use older data
from the same game and data from past games made the predictions worse, so it seems
that there is not much of a consistent relationship between market conditions and prices
across games, and even within a game. Or perhaps even more sophisticated learning
techniques are necessary to detect such a relationship, and implementing them may
be a direction for future work. Nevertheless, for future component prices, support
vector regression intriguingly yields slightly better results than the simple method, which
suggests that current prices are less relevant to the future, and that predicting future
market prices may be more amenable to machine learning approaches.
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