RagApproach Reference Manual
0.1

Generated by Doxygen 1.4.7
Wed Jul 26 20:22:54 2006

Copyright (c) 2006 Suzanne Matthews
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the pdf entitled "GNU Free Documentation License".

Contents

1 RaqApproach Namespace Index 1
1.1 RaqApproach Namespace List 1
2 RaqApproach Class Index 3
2.1 RaqApproach Class List 3
3 RaqApproach Namespace Documentation 5
3.1 std Namespace Reference 5
4 RaqApproach Class Documentation 7
4.1 element Class Reference o
4.2 helper Class Reference 9
4.3 Node Struct Reference 11
4.4 SuperNode Struct Referenceo 12
4.5 SuperTree Class Referenceo 13
4.6 Tree Class Reference 20

Chapter 1

RagApproach Namespace Index

1.1 RaqApproach Namespace List

Here is a list of all documented namespaces with brief descriptions:

std (The RAq Approach: main.cpp)

RaqApproach Namespace Index

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

Chapter 2

RagApproach Class Index

2.1 RagApproach Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

element (This class stores the distance and corresponding taxa) 7
helper (Helper class that assists with hashing procedure) 9
Node e 11
SuperNode e 12
SuperTree e 13

Tree e e 20

RaqApproach Class Index

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

Chapter 3

RagApproach Namespace
Documentation

3.1 std Namespace Reference

The RAq Approach: main.cpp.

3.1.1 Detailed Description

The RAq Approach: main.cpp.

Generates the distance matrix necessary for the creation of tree. Currently, "uncorrected dis-
tances" and the "score-based distances" options are the only ones that work. As a caveat, be
warned that these two distance methods will produce different trees.

RaqgApproach Namespace Documentation

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

Chapter 4

RagApproach Class Documentation

4.1 element Class Reference

this class stores the distance and corresponding taxa

#include <elements.h>

Public Member Functions

e element (string t, double d)

copy constructor

e element ()

default constructor

e string get taxa ()

get tazxa function

e double get dist ()

get distance function

Private Attributes

e double dist

distance between two taxa

e string taxa

actual two taxa

4.1.1 Detailed Description

this class stores the distance and corresponding taxa

this class assists with the clustering process by storing a set of taxa and their associated distance

8 RaqApproach Class Documentation

4.1.2 Constructor & Destructor Documentation
4.1.2.1 element::element (string t, double d)

copy constructor

takes in a string and a double and creates an element object out of them

Parameters:

t holds taxa to be copied into element object

d holds distance to be copied into element object

See also:

element() (p.8)

< copy constructor

4.1.2.2 element::element ()

default constructor

creates an element object with null values

See also:

element(string t, double d) (p.8)

< default constructor

4.1.3 Member Function Documentation
4.1.3.1 double element::get dist () [inline]
get distance function

Returns:

distance associated with an element

4.1.3.2 string element::get taxa () [inline]

get _taxa function

Returns:

the taxa associated with the element

The documentation for this class was generated from the following file:

e clements.h

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

4.2 helper Class Reference

4.2 helper Class Reference

helper class that assists with hashing procedure

#include <elements.h>

Public Member Functions

e helper (vector< short > i, vector< int > t)

copy constructor

helper ()

default constructor

e vector< short > get id ()

get id function

e vector< int > get tree ()

get tree function

void display ()

display function

Private Attributes

e vector< short > id

holds id of taxa or set of taxra

e vector< int > taxa list

holds taxa or set of taxra

4.2.1 Detailed Description

helper class that assists with hashing procedure

this class works closely with the merge section of code that merges common taxa together

4.2.2 Constructor & Destructor Documentation
4.2.2.1 helper::helper (vector< short > i, vector< int >)

copy constructor
takes in a vector<short> and a vector<int> to create a helper object
Parameters:

7 holds id of taxa or set of taxa
t holds taxa or set of taxa

< copy constructor

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

10 RaqApproach Class Documentation

4.2.3 Member Function Documentation
4.2.3.1 wvoid helper::display ()

display function
displays both the id and taxa list associated with that id

< displays id and associated taxa

4.2.3.2 vector<int> helper::get tree () [inline]
get tree function

Returns:

list of taxa associated with helper object

The documentation for this class was generated from the following file:

e clements.h

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

4.3 Node Struct Reference

11

4.3 Node Struct Reference

#include <tree.h>

Public Attributes

elements data
Node * left
Node * right
Node * parent
nid id

4.3.1 Detailed Description
Node (p.11) is the data structure primarily used for the decomposition step

Parameters:

xleft pointer to the left child
xright pointer to the right child
xparent pointer to the parent of current node

id identifier vector of the node
The documentation for this struct was generated from the following file:

e tree.h

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

12 RaqApproach Class Documentation

4.4 SuperNode Struct Reference

#include <tree.h>

Public Attributes

e int taxa

is 0 if there is no taxa: only occurs when it is an internal node

e SuperNode * left
would be NULL if is a leaf node

e SuperNode * right
would be NULL if is a leaf node

e SuperNode * parent

is never NULL... except when it is the root

e bool internal

indicates whether or not is an internal node

e nid id

identification of the node

4.4.1 Detailed Description
SuperNode (p.12) is the data structure primarily used for the super tree construction step

Parameters:
taxa holds taxa. is 0 when node is internal
xleft pointer to the left child
xright pointer to the right child
xparent pointer to the parent
internal indicates whether or not is internal node

id identification of the node (-1 when it is not the root node)
The documentation for this struct was generated from the following file:

e tree.h

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

4.5 SuperTree Class Reference

13

4.5 SuperTree Class Reference

#include <tree.h>

Public Member Functions

e SuperTree ()

create empty tree

e SuperTree (SuperNode x, int)

create new tree with passed node as the new main root.

e ~SuperTree ()

destructor

e void insert (int, int, nid, bool)

insert new node as child of current.

e void insert (SuperTree &, SuperTree &)

overloaded insert fuction

e void remove (SuperNode x)

delete a node and its subtree

e int value () const

value function

e nid Id () const
Id function.

e void left ()
navigate the tree go to left child

e void right ()
go to right child

e void parent ()

go to parent

e void reset ()
e void SetCurrent (SuperNode x*)

set the location of the current pointer

e SuperTree (const SuperTree &)

copy constructor

e SuperNode * pointer left () const

return subtree (node) pointers returns pointer to left child

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

14

RaqApproach Class Documentation

SuperNode * pointer right () const

returns pointer to right child

SuperNode * pointer parent () const

returns pointer to parent

SuperNode * pointer current () const

returns current pointer

SuperNode * root () const

returns pointer to main root

int peek left () const

return values of children and parent without leaving current node return tacra of left
child
int peek right () const

return taxza of right child

int peek parent () const

return taxza of parent

void DisplayInorder (SuperNode *) const

print the tree or a subtree. do an "in-order" traversal

void DisplayPreorder (SuperNode *) const

do a "pre-order" traversal

void DisplayPostorder (SuperNode) const
void Newick (list< string > &, SuperNode x)

displays newick format of tree

void clear ()

delete all nodes in the tree

bool IsEmpty () const

checks to see if a tree is empty

bool IsFull () const

checks to see if the tree is full

bool IsInternal () const

checks to see the current node is an internal node

Private Member Functions

¢ SuperNode x CopyTree (SuperNode %, SuperNode %) const

create a new copy of a subtree if passed to the constructor

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

4.5 SuperTree Class Reference 15

e SuperNode * CopyTree (SuperNode *, SuperNode *, int) const

CopyTree created for personal devices.

Private Attributes

e SuperNode * current

pointer to current node

e SuperNode * main_root

pointer to root node

e bool subtree

does it reference a part of a larger object?

4.5.1 Detailed Description

Basic data structure that creates the subtrees and final supertree in the final steps of the algorithm

4.5.2 Constructor & Destructor Documentation
4.5.2.1 SuperTree::SuperTree ()

create empty tree

creates empty tree with default root node which has no value. set current to main root node.

4.5.2.2 SuperTree::SuperTree (SuperNode %, int)

create new tree with passed node as the new main root.

set current to main root.

Parameters:

SuperNodex node to set as root of tree

int indicates where object should point to (0: node of original tree 1: new copy of the subtree

See also:

SuperTree(SuperNodex, int) (p.15), SuperTree(const SuperTree &) (p.16),
~SuperTree() (p.15)

4.5.2.3 SuperTree::~SuperTree ()

destructor

See also:

SuperTree() (p.15), SuperTree(SuperNodex, int) (p.15), SuperTree(const Super-
Tree &) (p. 16)

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

16 RaqApproach Class Documentation

< delete all nodes

4.5.2.4 SuperTree::SuperTree (const SuperTree &)

copy constructor

allows SuperTree (p.13) to do a "deep" copy

Parameters:

SuperTree€s SuperTree (p.13) object to be copied

4.5.3 Member Function Documentation
4.5.3.1 void SuperTree::clear ()

delete all nodes in the tree
< use the remove function on the main root

< since there are no more items, set main root to NULL

4.5.3.2 SuperNode * SuperTree::CopyTree (SuperNode * root, SuperNode * parent,
int dummy) const [privatel
CopyTree created for personal devices.
Does same thing as the one above, accept is created for own devices sets the ids of all the internal
nodes to -1
Parameters:
root pointer to root of SuperTree (p.13)
parent pointer to parent of SuperNode (p.12)

dummy just a dummy value to indicate a new function (boo! bad coding practice!)

Returns:

pointer location of new root node

< base case - if the node doesn’t exist, return NULL.

make a new location in memory

make a copy of the node’s data

set the new node’s parent

copy the left subtree of the current node. pass the current node as the subtree’s parent
do the same with the right subtree

what makes this function different from the other one!

AN AN AN NN AN

return a pointer to the newly created node.

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

4.5 SuperTree Class Reference 17

4.5.3.3 SuperNode * SuperTree::CopyTree (SuperNode * root, SuperNode *
parent) const [private]
create a new copy of a subtree if passed to the constructor

The second parameter is a pointer to the parent of the subtree being passed. Since parent of the
main root is always NULL, we pass NULL as the second parameter in the class constructor

Parameters:

root pointer to root of SuperTree (p.13)
parent pointer to parent of SuperNode (p.12)

Returns:

pointer location of new root node

< base case - if the node doesn’t exist, return NULL.

< make a new location in memory

< make a copy of the node’s data

< set the new node’s parent

< copy the left subtree of the current node. pass the current node as the subtree’s parent
< do the same with the right subtree

< return a pointer to the newly created node.

4.5.3.4 void SuperTree::DisplayPostorder (SuperNode %) const

do a "post-order" traversal

4.5.3.5 nid SuperTree::Id () const
Id function.

Returns:

id at current location (vector<short>)

4.5.3.6 void SuperTree::insert (SuperTree &, SuperTree &)

overloaded insert, fuction

inserts a right and left supertree as subtrees

Parameters:

SuperTree (p.13) & left tree to be inserted
SuperTree (p.18) & right tree to be inserted

See also:

insert(int, int, nid, bool) (p. 18)

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

18 RaqApproach Class Documentation

< if the tree has no nodes, make a root node, disregard pos.

< node created, exit the function

Parameters:

right insert left and right subtrees

4.5.3.7 void SuperTree::insert (int, int, nid, bool)

insert new node as child of current.

insert new taxa into supertree:

Parameters:

int taxa (-1 or 0 if it is an internal node)
int location to insert (0—left 1—right 2 — parent)
nid id of Node (p.11) to be inserted (-1 if is an internal node)

bool indicates whether or not the node is internal

See also:

insert(SuperTree &, SuperTree &) (p.17)

if the tree has no nodes, make a root node, disregard pos.
< node created, exit the function

if new node is a left child of current

if child already exists, replace value

if it is a left child, copy the id of the parent

else if new node is a right child of current

if child already exists, replace value

AN NN NN A

if it is a right child, copy the id of the parent

4.5.3.8 bool SuperTree::IsEmpty () const

checks to see if a tree is empty

< If there aren’t any nodes in the tree, main_root points to NULL

4.5.3.9 void SuperTree::Newick (list< string > &, SuperNode %)

displays newick format of tree

recrusively outputs the tree in Newick format

Parameters:

list< string> €4 contains tree so far in Newick format

SuperNodex pointer to root of tree we want to output in Newick format

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

4.5 SuperTree Class Reference

19

4.5.3.10 int SuperTree::peek left () const

return values of children and parent without leaving current node return taxa of left child
advantage: we don’t have to leave the node! (self-explanatory)

4.5.3.11 void SuperTree::remove (SuperNode x)

delete a node and its subtree

recursively deletes the node pointed to by SuperNode (p. 12) and all the nodes in its subtree

Parameters:

SuperNodex indicates root of tree to be deleted

See also:

clear() (p.16)

< base case - if the root doesn’t exist, do nothing

< perform the remove operation on the nodes left subtree first

< perform the remove operation on the nodes right subtree first

< if the main root is being deleted, main_root must be set to NULL

< make sure the parent of the subtree’s root points to NULL, since the node no longer exists
< set current to the parent of the subtree removed.

4.5.3.12 void SuperTree::reset ()

go to main _root

4.5.3.13 void SuperTree::SetCurrent (SuperNode x)
set the location of the current pointer

Parameters:

SuperNodex location that current pointer should be set to

4.5.3.14 int SuperTree::value () const
value function

Returns:

taxa at current location

The documentation for this class was generated from the following file:

e tree.h

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

20 RaqApproach Class Documentation

4.6 Tree Class Reference

#include <tree.h>

Public Member Functions

e Tree ()

create empty tree

e Tree (Node x, int)

create new tree with passed node as the new main root.

e ~Tree ()

destructor

e void insert (const elements &, int)

inserts a new node as child of current

e void remove (Node x)

deletes a node and its subtree

e Tree (const Tree &)

copy constructor

e clements value () const

value function

e nid Id () const
Id function.

e void left ()
navigate the tree go left

e void right ()
go right

e void parent ()

go the the parent

e void reset ()
e void SetCurrent (Node)

set placement of the current pointer

e Node * pointer left () const

return subtree (node) pointers returns pointer to left child

e Node * pointer right () const

returns pointer to right child

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

4.6 Tree Class Reference 21

Node * pointer parent () const

returns pointer to parent

e Node * pointer current () const

returns current pointer

e Node * root () const

returns pointer to root of Tree (p.20)

e clements peek left () const

return values of children and parent without leaving current node returns elements
of left child

e clements peek right () const

returns elements of right child

e elements peek parent () const

returns elements of parent

e void DisplayInorder (Node %) const

print the tree or a subtree. print an "in-order" traversal

e void DisplayPreorder (Node x) const

print a "pre-order" traversal

e void DisplayPostorder (Node *) const

print a "post-order" traversal

e void clear ()

delete all nodes in the tree

e bool IsEmpty () const

check to see if the tree is empty or full

e bool IsFull () const

checks to see if tree is full

Private Member Functions

e Node x CopyTree (Node *, Node x) const

create a new copy of a subtree if passed to the constructor

Private Attributes

e Node * current

pointer to current Node (p.11)

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

22 RaqApproach Class Documentation

e Node x main root

pointer to the root of the Tree (p. 20)

e bool subtree

does it reference a part of a larger object?

4.6.1 Detailed Description

Basic data structure that creates the decomposition tree and guide tree in the decomposition step

4.6.2 Constructor & Destructor Documentation
4.6.2.1 Tree::Tree ()

create empty tree

creates tree with default root node which has no value. set current to main root node.

4.6.2.2 Tree::Tree (Node %, int)

create new tree with passed node as the new main root.
set current to main root. if the second parameter is 0, the new object simply points to the node
of the original tree. If the second parameter is 1, a new copy of the subtree is created, which the
object points to.
Parameters:

Nodex indicates root location

int indicates where object points to (0: node of original tree, 1: new subtree)

4.6.2.3 Tree::~Tree ()

destructor
calls the clear function to recursively remove subtrees

< delete all nodes

4.6.2.4 Tree::Tree (const Tree &)

copy constructor

performs a "deep copy" of tree object

See also:

Tree() (p.22), Tree(Nodex, int) (p.22)

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

4.6 Tree Class Reference 23

4.6.3 Member Function Documentation
4.6.3.1 void Tree:clear ()

delete all nodes in the tree
< use the remove function on the main root

< since there are no more items, set main root to NULL

4.6.3.2 Node * Tree::CopyTree (Node * root, Node * parent) const [private]

create a new copy of a subtree if passed to the constructor

The second parameter is a pointer to the parent of the subtree being passed. Since parent of the
main root is always NULL, we pass NULL as the second parameter in the class constructor
Parameters:

root pointer to root of tree

parent pointer to parent of Node (p.11)

Returns:

pointer location of new root node

< base case - if the node doesn’t exist, return NULL.

< make a new location in memory

< make a copy of the node’s data

< set the new node’s parent

< copy the left subtree of the current node. pass the current node as the subtree’s parent
< do the same with the right subtree

< return a pointer to the newly created node.
4.6.3.3 nid Tree::Id () const

Id function.

Returns:

corresponding id of current Node (p.11) (vector<short>)

See also:

value() (p.25)

4.6.3.4 void Tree::insert (const elements &, int)

inserts a new node as child of current

inserts a new element into tree at desired position.

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

24 RaqApproach Class Documentation

Parameters:

elementséd list<element> that should be inserted into tree

int indicates position that node should be inserted (0: left 1:right)

if the tree has no nodes, make a root node, disregard pos.
< node created, exit, the function

< if new node is a left child of current

if child already exists, replace value

if is left child, copy the id of the parent

push _back the value one (we're creating a new level)
else, new node is a right child of current

if child already exists, replace value

if it is a right child, copy the id of the parent

NN ONONON NN

increment the last element by one (we’re on the same level)

Parameters:

pos insert as child of current 0—left 1—right. if item already exists, replace it

4.6.3.5 bool Tree::IsEmpty () const

check to see if the tree is empty or full

< If there aren’t any nodes in the tree, main_root points to NULL

4.6.3.6 elements Tree::peek left () const

return values of children and parent without leaving current node returns elements of left child

advantage: we don’t have to leave the node! (self-explanatory)

4.6.3.7 void Tree::remove (Node x)

deletes a node and its subtree

recursively removes the node pointed to by Nodex and all of its subtress

Parameters:

Nodex points to root of tree that is to be deleted

< base case - if the root doesn’t exist, do nothing

< perform the remove operation on the nodes left subtree first

< perform the remove operation on the nodes right subtree first

< if the main root is being deleted, main root must be set to NULL

< make sure the parent of the subtree’s root points to NULL, since the node no longer exists

< set current to the parent of the subtree removed.

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

4.6 Tree Class Reference

25

4.6.3.8 void Tree::reset ()

go to main _root

4.6.3.9 void Tree::SetCurrent (Node %)
set placement of the current pointer

Parameters:

Nodex points to location that current should be set to

4.6.3.10 elements Tree::value () const
value function

Returns:

list<element> of current Node (p. 11)

See also:

Id() (p.-23)
The documentation for this class was generated from the following file:

e tree.h

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

Index

~SuperTree
SuperTree, 15
~Tree
Tree, 22

clear
SuperTree, 16
Tree, 23
CopyTree
SuperTree, 16
Tree, 23

display
helper, 10
DisplayPostorder
SuperTree, 17

element, 7
element, 8
get dist, 8
get taxa, 8

get dist
element, 8

get taxa
element, 8

get tree
helper, 10

helper, 9
display, 10
get tree, 10
helper, 9

Id
SuperTree, 17
Tree, 23

insert
SuperTree, 17, 18
Tree, 23

IsEmpty
SuperTree, 18
Tree, 24

Newick
SuperTree, 18

Node, 11

peek _left
SuperTree, 18
Tree, 24

remove
SuperTree, 19
Tree, 24

reset
SuperTree, 19
Tree, 24

SetCurrent
SuperTree, 19
Tree, 25

std, 5

SuperNode, 12

SuperTree, 13
SuperTree, 15, 16

SuperTree
~SuperTree, 15
clear, 16
CopyTree, 16

DisplayPostorder, 17

Id, 17

insert, 17, 18
IsEmpty, 18
Newick, 18

peek left, 18
remove, 19

reset, 19
SetCurrent, 19
SuperTree, 15, 16
value, 19

Tree, 20
~Tree, 22
clear, 23
CopyTree, 23
1d, 23
insert, 23
IsEmpty, 24
peek left, 24
remove, 24
reset, 24

INDEX

27

SetCurrent, 25
Tree, 22
value, 25

value
SuperTree, 19
Tree, 25

Generated on Wed Jul 26 20:22:54 2006 for RagApproach by Doxygen

