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Abstract

Hardware and software resources in a mobile sen-
sor network are limited and expensive, therefore
we need an efficient way of managing their usage.
One way to achieve this is by sharing resources
among nodes. An economic model where nodes
pay for resources they use and receive currency
for resources they rent is one way of providing
incentive for sharing. In networks where more
than one node is ready to provide a resource, we
need an effective way to pick the ”best” seller. In
this paper we present two decision schemes which
aim to increase the total efficiency of the system
in terms of successfully completed node request.
We argue that a system where a node’s quality
of service and price of service are both factored
into the final decision achieves best results. We
test our hypothesis by running simulated exper-
iments in software.

1 Introduction

Wireless sensor networks are becoming in-
creasingly widespread in various contexts. For
example, sensor nodes have been deployed on
wildlife for tracking purposes [4], and could be
used on vehicles for exchange of traffic informa-
tion [8]. The nature of sensor networks intro-
duces several challenges, including limited bat-
tery life, frequent network disconnections, and
limited resources. Similar issues arise in peer-to-
peer (P2P) networks where users join the net-
work, request resources, use them and then leave.
In this case, we are not pressed by the energy-

efficiency problem, but we still have to consider
the instability of the network in terms of dis- and
reappearing peers. The ultimate goal in both
sensor networks and P2P network is the efficient
use of resources and transmission of data.

The problem we address is that of managing
resources in a sensor network. Similar work has
been done on P2P systems in [7]. In their work
Turner and Ross point out that nodes often do
not have an incentive to participate in resource
sharing. Therefore they propose an economic
market as a possible motivation; in this market
nodes can offer and request resources in exchange
for some monetary value. We take this idea and
adapt it to the sensor network context. In our
model there is a universal payment currency and
each node receives the same initial budget. Sen-
sor nodes request resources without specifying
the ”seller” they would like to buy it from. In
a moderately dense network, on many occasions
several potential sellers are available to serve the
same request. Consequently, the main focus of
this work is the design and implementation of
algorithms for optimal decision between sellers.

Overall, the contributions of this work are the
following:

• We built a software simulator, Atrium,
which mimics the interactions between
nodes in a wireless network. Atrium allows
for the evaluation of node and system be-
havior.

• We proposed and implemented two algo-
rithms for decision -making when a client
node requests services from a seller node.
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• We achieved an average improvement of
10% over the baseline case in terms of per-
centage of completed requests in the system.

The remainder of this paper is organized as
follows. Section 2 discusses some related work.
Section 3 presents the software implementation
of the Atrium simulator. Section 4 presents the
baseline and newly proposed decision algorithms.
Section 5 presents our experimental results. Fi-
nally, Section 6 presents our conclusions and fu-
ture work.

2 Related Work

Several projects have looked at using economic
models for managing of resources in both sensor
and P2P networks [8] [7] [2] [6]. They all agree on
the basics of such models - the existence of cur-
rency and budget allocation.[2] proposes a model
in which nodes pay not for the usage of a specific
resource but rather a combination of resources,
needed for the completion of a single task.

The auction model is discussed in [1] and [2].
These works present the idea that in the case
of several potential buyers of a resource and one
seller, bidding is a good way to determine the
winning client. They however do not discuss
what happens if more than one seller are avail-
able. In [8] it is assumed that there is a way of
dealing with interferences and conflicts. We can
look at the multiple available resources as a type
of conflict and use one of the decision schemes
described in our work to solve it.

A good discussion of why economic models will
be a useful approach to the problem at hand
is given in [3]. The main point being that in
a sensor network the decentralized allocation of
resources is more efficient and desirable than a
centralized approach.

The issue of determining the pricing of re-
sources is not addressed directly in many of the
related works. In [8] and [9] a relevance function
is proposed. Based on this function a node can
determine the price of a resource. These papers
do not address the issue of dynamic price changes

Event type Description Event Form Example

move Specifies the time and 

coordinates to which a 

specific node has moved 

<nodeID> <time> move <x> <y>  6 41 move 3 3 

failure Specifies that a certain 

resource on a node is 

experiencing failure; the 

event determines how 

long the failure will last 

<nodeID> <time> failure <resource> 

<length of failure> 

10 49 failure 

radio 9 

charge Specify the time at 

which a node’s battery is 

fully recharged 

<nodeID> <time> charge 4 390 charge 

request Specifies what resource 

and for long a node 

would like to request 

<nodeID> <time> request 

<resource> <length of request> 

14 462 request 

radio 163 

rate Specifies the time at 

which all nodes’ ratings 

are updated 

0 <time> rate 0 50000 rate 

Figure 1: Types of events for the Atrium simu-
lator

depending on the energy status of a node. On
the other hand, [5] touches on the subject by
proposing that price of a service needs to be di-
rectly related to its energy cost. We use a similar
idea in our work and implement a pricing scheme
in which prices reflect the energy budget of the
seller.

3 Implementation

3.1 Atrium

Atrium is a software simulator implemented in
Java. It creates a distributed network of nodes,
where the size of the network and the number of
nodes are configurable. Experiments ran for the
purposes of this project were run in an environ-
ment of 20 nodes, spread out randomly in a 15
by 15 grid.

Each node in the simulated system owns one
type of resource, say a radio transmitter. In ad-
dition each node begins the experiment with a
budget allocation of 100, full battery, and a rat-
ing of 10.0. As the experiment progresses and
nodes interact with each other, the characteris-
tics of nodes change.

Atrium takes in a file that specifies the char-
acteristics of each node. These include price of
node resources, energy level, radio range, ini-
tial budget, and initial node rating. In addi-
tion Atrium reads in a trace file with a list of
events. The events that are currently supported
are movement of node, request for resource, bat-
tery charge, node rating, and node failure. The
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Figure 2: Correlation between failure rates and
node ratings

table in Figure 1 summarizes the each of these
events.

The simulator processes the list of events,
updating node attributes and keeping statistics
about the network’s performance.

Some of the more important features of the
Atrium are described below.

3.2 Dynamic Pricing

In order to take into account the energy-
constrained environment of wireless sensor net-
works, we devise a scheme in which resource
prices are adjusted based on energy. In particu-
lar, for every percent drop in battery, the price
of node’s resources goes up by half a percent. In
this way when the nodes in the network start
running low energy, they become more valuable
and pricing reflects that. In Section 5.3 we look
at some experimental data of how prices change
under different decision schemes.

3.3 Node Rating Scheme

In order to reward nodes that are reliable and
actively service requests, and to punish nodes
that often fail, we have developed an ”e-bay”
style rating system. Nodes are judged on the

number of accepted and the number of success-
fully completed requests. This is reflected in the
formula below:

value = AcceptedReq/ReceivedReq −
FailedReq/AcceptedReq

If the number of request the seller has received
and/or accepted is 0, then the node is punished
for not participating actively in the system and
a constant 0.5 points are deducted from its rat-
ing. In all other cases, the above formula takes
into account the willingness of a node to accept a
request as well as the success rate of completing
requests that have already been accepted.

The updated rating of a node is a weighted
average of the current and the newly computed
values. In our experiments we used 0.75 weight
for the current node rating and 0.25 for the new
one, but these parameters can be easily changed.

In order to evaluate our rating scheme we ran
experiments with nodes whose failure rates var-
ied from 10% to 90%. For each of those points we
observed the end node rating. We ran the exper-
iment twice - once for 10 000 time cycles and the
second time for 50 000 time cycles. As expected
the results were more stable for the second run,
because nodes had more chances for interaction
with each other. Ideally, there would be a linear
correlation between failure rate and rating. Due
to the random movement of nodes throughout
the grid, however, we get certain indeterminism.
In other words, not all nodes have equal chances
of selling their resources because of their physical
location. Therefore we cannot expect a perfect
correlation between rating and quality, but we
can still use the rating to predict the likelihood
of a node not completing its task.

Figure 2 shows the results we obtained form
the two runs. We can see that in both cases,
the expected trend is preserved and nodes with
higher failure rates received lower ratings. There
is one major outlier in the 10000 time cycles run,
and this is attributed to the fact that ratings did
not have enough time to stabilize. The outlier is
missing in the 50000-cycle run.
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4 Decision Algorithms

Since the main question we want to answer with
this project is, What would be a good way to de-
cide between several potential seller nodes offer-
ing the same resource? we propose two different
decision schemes. Using Atrium we were able
to test the two algorithms and compare them to
a baseline one. Below we describe all three of
them.

4.1 Baseline Algorithm

In the baseline algorithm, a client node that is re-
questing resources always chooses the seller node
with the lowest ID. This ensures that the decision
scheme is completely oblivious to any character-
istics that might differentiate potential sellers.
An alternative scheme that might be used as a
baseline is random choice of seller.

4.2 Price-Only Algorithm

Exploring the economic idea that cheap goods
will allow for greater purchasing power, we de-
vised an algorithm in which nodes always pick
the resource seller with the lowest price. Intu-
itively this is a reasonable choice because spend-
ing less money on each transaction in the system
will allow nodes to complete a greater number of
transactions.

We predict that such an algorithm will per-
form very well in systems where cheap nodes
have high availability. Unfortunately, the likeli-
hood of operating in such a network is low, since
quality usually comes at a greater price. An ex-
ample of a network in which the price - only al-
gorithm will not perform optimally is one where
low-priced nodes have high rates of failure. It is
possible to have a situation in which a node has
price five to ten times lower than others, but also
exhibit a rate of failure five to ten time higher.
In this case, the price-only scheme will often pick
nodes that are cheap but unreliable and will thus
decrease the number of successfully completed
resource requests.

Judging from real life economic models, we
would expect networks of nodes where quality
costs more and low prices are associated with
suboptimal quality of service. For this reason
we propose a scheme that takes into account not
only the price of a resource but also the quality
rating of the seller offering the resource.

4.3 Adaptive Algorithm

In the adaptive algorithm we consider both the
resource price and the overall rating of the seller
node. This way, we are able to make a better
judgment of how worthy a node is. A simple
way to convey this idea would be to take the
ratio of price over rating and get a measure of
currency per rating point. Even though this ap-
proach guarantees us to always make economi-
cally sound choices, it also has drawbacks. First,
the rating of devices can only partially give us
an idea of how reliable they are. Ratings are
based on a nodes history of transactions with
its neighbors and cannot always predict the fu-
ture accurately. In addition, a ratio approach
does not allow nodes to choose the importance
of price and rating. For example, a node with
a very high budget might want to purchase re-
sources from the neighbor with highest rating
without regard for price. Later, that same node,
having had its budged drop drastically, might de-
cide that it would go for a seller node of lower
quality of affordable price.

In order to deal with the limitations of a simple
price-rating ratio scheme, we propose an adap-
tive algorithm. The variables that go in the al-
gorithm are the following: client node’s initial
and current budget allowance, and seller node’s
price and rating. We call the overall score of a
seller s, where s = α ∗ rating − β ∗ price. From
this equation you can see that a very high score
will be achieved by a node with high rating and
low price, while a seller with a high price but low
rating will receive a low overall score.

Below we outline the steps through which the
adaptive algorithm determines the values of α
and β.
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Figure 3: Connectivity information for a node in
the network.

• If clients current budget is equal to initial
budget, then seller price and seller rating
receive equal importance:

α = 0.5

β = 0.5

• Else:

α = 0.5 + ((client.CurrentBudget() −
client.InitBudget())/10.0) ∗ 0.05

β = 1− α

The intuitive thought behind this scheme is
that a rich node is willing to pay more for qual-
ity. As the wealth of a client node increases,
the importance of price decreases. On the other
hand, if a node is running low on currency, then
it is willing to sacrifice quality of transaction and
pay an affordable price.

5 Results and Observations

This section presents our experiment results and
discusses some observations made during the ex-
periments.

Connectivity - Node 2
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Figure 4: Connectivity information for a node in
the network.

5.1 Network Connectivity

Before presenting a comparison between the
baseline, price-only, and adaptive decision
schemes, we discuss the effect of connectivity
on those. After several experiments we discov-
ered that in a sparse network all algorithms per-
form nearly the same. For example, some early
experiment were ran in a simulated network of
size 25 by 25. We randomly placed 10 nodes,
each with range of 5, and tested the three deci-
sion schemes. In the experiments the percent of
successfully completed transactions was 21.77%,
20.88%, and 21.4% for the baseline, price-only,
and adaptive schemes respectfully. The lack of
difference between different experiments is due
to the low density and hence connectivity in the
network. On most occasions when a node wants
to request a resource from a neighbor, there is
only one available seller. Therefore, the decision
schemes do not come into use at all.

For the remainder of experiments and obser-
vations we worked with a much denser network.
It consists of 20 nodes in a 15 by 15 grid. As
before, each node had a radio range of 5. In
order to get a visual idea of what kind of den-
sity this setup gives us, we present the connec-
tivity graphs of 2 nodes - Figure 4 and Figure
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Performance of baseline, price-only, and adaptive schemes 
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Figure 5: Performance of algorithms. Non-
random pricing

5. Each data point on the upper curve repre-
sents the number of neighbors the node had in
range at a request time. The lower line indicates
the number of available sellers at request time.
The difference between the two lines comes from
the fact that often nodes are in range, but have
unavailable resources.

5.2 Success rate of Algorithms

The main metric used in the evaluation of
price-only and adaptive algorithm is the per-
centage of completed transactions between two
nodes, for the entire system. Each tracefiles in-
cludes about 1000 request events. On average,
the adaptive decision scheme increases the per-
cent of completed request by 10% over the base-
line case.

We ran two sets of experiments. In the first
set prices of resources were determined randomly
and did not in any way reflect the reliability
of the node. In the second set of experiments,
we chose prices that reflect node failure rates.
We expected to see overall better performance
of the adaptive algorithm, and higher percent-
age of completed requests in the second set of
experiments.

Figures 6 and 7 show the results from both

Performance of baseline, price-only, and adaptive schemes
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Figure 6: Performance of algorithms. Random
pricing

experiment sets. We can see that the price-only
and adaptive decision schemes constantly per-
form better than the baseline algorithm. In ad-
dition, the adaptive runs outperform the price-
only. Therefore we can conclude that in a moder-
ately dense network, where prices reflect quality,
using a smart algorithm to choose between po-
tential resource sellers increases the overall per-
formance of the system.

5.3 Price changes

It is interesting to observe what effect the de-
cision schemes have on the dynamically changing
resource pricing. As described in Section 3.2 a
seller adjusts its price based on its energy budget.
Figure 3 presents a timeline of these changes for
one node. We see that when Atrium is ran with
the adaptive scheme the peak prices are lower
than those in the baseline case. This means that
under the adaptive algorithm prices are more
stable and remain more affordable to potential
client nodes. Similar observations were made for
other nodes.
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Timeline of price changes on one node
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Figure 7: Dynamic change of price for one node
under the baseline and adaptive schems

5.4 Seller Rejection

In addition to discussing the success rates of
different algorithms we also explore the various
reasons seller nodes are rejected during our ex-
periments. In some situations a request is never
completed successfully because the client node
has rejected all sellers in range. A deeper un-
derstanding of why sellers are unable to accept
a request will give an idea of what aspects of
individual nodes or the system as a whole need
to change in order to achieve improved perfor-
mance.

We identify three reasons for a rejection of
seller:

• unaffordable price - the client node did not
have enough currency to pay for the seller’s
resource

• busy seller - the resource is already being
used by a different client

• failed seller - the node’s resource is not func-
tioning properly

In Figure 8 we see the percentage of rejections
of each type for all three decision algorithms. We
observe that overall the number of rejections is
lowest for the adaptive scheme. This result is
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unaffordable price

Figure 8: Distribution of reasons for seller rejec-
tion for all three schemes

with agreement with the fact that the adaptive
scheme has the most successful request comple-
tions. In addition, the number of times sellers
are polled for their resources is minimized in
the adaptive algorithm. In one experiment, the
adaptive algorithm run considered about 9400
sellers, while the price-only polled 10000 and the
baseline close to 11000. The conclusion is that
with the adaptive algorithm we not only increase
out success rate but also minimize the number of
wasteful interactions between nodes.

Looking at the breakdown of seller rejections
based on type, we can see that in all three cases
the largest percentage was due to an unafford-
able price on the seller’s side. They account for
about 45%, 50%, and 60% of all rejections for
the adaptive, price-only, and baseline algorithms
respectfully. Busy sellers account for a small per-
centage of rejections, with this percentage being
a bit higher in the adaptive runs. The intuitive
reason for this is that since more requests are
getting completed, more sellers are busy when
clients contact them. Failures among nodes’ re-
sources are the other big reason for uncompleted
requests.

These results prompt us to consider ways of
improving the system. It would be interesting to
see what experiments would show if all all nodes
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had increased budgets. Ideally there would be a
way of determining how much money each node
is allowed to spend on transactions based on its
importance and energy profile.

Even though the graph does not indicate this,
in addition to having a seller rejected because
its resource has failed, a seller might interrupt a
transaction that has already started. This would
happen if a seller has accepted a request, lend its
resource for a certain number of time cycles, but
experienced a failure in the meantime. Exper-
iments show that the adaptive decision scheme
minimizes the number of such interruptions.

6 Conclusion and Future Work

This paper has presented the implementation
of Atrium, a software simulator used to inves-
tigate resource sharing algorithms. We have
also introduced two schemes for choosing be-
tween sellers offering the same resource. We
have showed that a careful consideration of both
node’s quality and price performs better than a
baseline scheme. In the work leading to our final
results we also developed an ”e-bay” style node
rating scheme, as well as a system for dynamic
adjustment of resource prices.

Future work might include testing of the pro-
posed algorithms on a real sensor network. In
addition, we would like to investigate the energy
implications of using different schemes. In par-
ticular, it would be interesting to see whether a
simple scheme, such as the price-only one, might
be more efficient in terms of overhead compared
to the more sophisticated adaptive scheme.

Taking this project one step further, it will
be useful to see how the proposed algorithms
need to be adapted to a system with multiple
resources and requests for combination of re-
sources.
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