
WebVizOr: A Fault Detection Visualization Tool for Web

Applications

Barbara Hazelwood

Mathematics and Computer Science

Xavier University

Cincinnati, OH 45207

hazelwoodb@xavier.edu

Holly Esquivel

Computer Science and Information Systems

University of Nebraska at Kearney

Kearney, NE 68845

esquivelhm@unk.edu

1 Introduction

Businesses, governments, and consumers increas-
ingly rely on the stability, security, and usability of
web applications. However, the scale of such appli-
cations can make the verification process both time-
consuming and laborious. To reduce the overhead of
the testing process and to ensure proper application
behavior, testers need automated, cost-effective test
strategies to develop, execute, and analyze the success
of test cases.

In this paper we present WebVizOr (Web Applica-
tion Fault Detection Visualization with Oracles), an
open-source tool which aids in the analysis of test case
results. Our tool takes as input test cases, which are
a series of HTTP requests sent to a web application,
and the HTML responses generated on executing those
test cases. In its simplest usage, WebVizOr provides a
means for navigating through and viewing the HTML
reponses, which comprise the test case results. Beyond
visualization, WebVizOr harnesses the power of vari-
ous oracles to automatically analyze and compare the
HTML responses from different versions of the same
application in order to locate symptoms of possible
faults. This last usage is especially pertinent in a world
of ever-evolving applications, in which the first version
is almost never the last. As applications grow and
change, the need for regression testing is apparent.

2 Background

In this section we discuss capture/replay testing
techniques, which were the motivation behind the de-
velopment of WebVizOr. We also discuss four pre-
viously defined web application testing oracles which
have been integrated into the WebVizOr system.

2.1 Capture/Replay Testing

WebVizOr was originally conceived to facilitate the
use of a capture/replay testing framework. In cap-
ture/replay testing the actual deployed behavior of a
previous version of the application is captured by log-
ging each HTTP request made to the system. These
requests are then organized into test cases by some
standard (e.g. all requests made by a given user or
in a given time frame) and are then replayed against
a new version of the application to verify correctness
of the new version. For a more detailed look at a cap-
ture/replay framework based on user sessions, see [4].

2.2 Oracles: HTML Comparator Algorithms

When a test suite (a collection of test cases) is ex-
ecuted against a previous version of the application it
evokes the expected results. When the same test suite
is execute against a new version of the application it
evokes the actual results. Expected and actual results
can be compared for the purposes of detecting faults in
the new application version. In [4] four basic compara-
tor algorithms - oracles - for validating HTML output
were defined. All of these algorithms involve execut-
ing a simple diff command to compare the expected
output with a corresponding actual output. The ora-
cles diverge in the ways in which they pre-process the
outputs before comparing them.

The first basic oracle is called Raw because it exe-
cutes a diff on the unfiltered, source HTML. This or-
acle will detect any changes that have occurred in the
HTML. While inexpensive, the Raw oracle returns a
high rate of false positives due to its sensitivity. It will
detect every change in layout, dynamic content, font
color, etc., even when those changes do not constitute
actual faults.

1



The second basic oracle is a content-based oracle,
Content, which we call Text. Before the diff is run,
the raw HTML is filtered of all tags and tag attributes,
leaving only the textual content of the output. This
oracle avoids detecting false positives that are due to
formatting changes, however it will still detect changes
to dynamic content which are not always technically
faults.

The third basic oracle is a structure-based oracle,
Structure, which has two variations that we call Tag

and Tag++. They are similar in that they exclude
the textual content of the output and focus on the tags
within the HTML. Tag filters out everything except for
the tag names. Tag++ goes beyond this and include
certain tag attributes. Structure-based oracles avoid
false-positives do to dynamic content but can incor-
rectly fail pages that have only slight changes to the
UI which do not affect application behavior.

The fourth basic oracle examines the results of the
test suite at a higher level to ensure that all of the
responses expected were actually returned. This ora-
cle, Flist, which we call Path, executes a diff on the
list of HTML responses in the expected and actual test
suite results. Path catches errors that resulted in URL
redirection or in the server not generating HTML re-
sponses. It is useful as a precursor to the other oracles
by identifying which responses in the expected results
have no counter-part in the actual results.

2.2.1 Other Diff Algorithms

There is some literature in data managements about
how to diff semi-structured data [1, 2]. They used their
algorithms to diff two web pages, but the algorithms
seemed slow and would not likely be practical for our
purposes.

3 Tool Features

WebVizOr’s overall design allows for the visualiza-
tion of one HTML response from a web application
or two HTML responses from different executions of a
web application for fault detection purposes. Briefly
this section will describe WebVizOr and the features it
has that are key to our unique automated design.

3.1 View Saved HTML Responses

The visualization of saved HTML responses is key
to efficient fault detection in web applications. WebVi-
zOr presents HTML responses to the user via a single
view version or a comparison view version. Single view
version presents the HTML responses in a single frame

within WebVizOr. If the single suite version is chosen
one response is displayed at a time. By viewing one
suite users can quickly check the output of an HTML
response in its rendered or HTML source code form
in the WebVizOr frame. If comparison view is cho-
sen both sets of responses should be from the same
sequence of HTTP requests. The comparison view op-
tion allows for easy comparison of responses in side
by side frames in WebVizOr. When two responses are
available, WebVizOr can not only display the analo-
gous responses in rendered or HTML source form but
as well, it can display their oracle comparator results.
WebVizOr doesn’t reference style sheets when viewing
HTML responses. Even without style sheet informa-
tion the user should be able to effectively analyze any
possible faults detected via oracle comparator results.

3.2 Navigate through HTML Responses

Efficiently navigating through HTML responses is
crucial in the automation process of fault detection.
Navigating through responses has primarily become a
problem because of the hundreds of various responses
that can produced by a single web application [3] When
viewing responses in WebVizOr in either the single or
comparsion view the user has the ability to iterate
through the entire test suite run via navigation but-
tons. WebVizOr’s navigation buttons allow the user to
navigate to a previous or next response as well as jump
to the previous or next test case in the suite run. If
the number of test cases is large the user my choose to
navigate from WebVizOr’s navigation frame. All test
cases are display in the navigation frame, but if Web-
VizOr encounters a test suite with more than 30 test
cases it automatically sorts the test cases in alphabet-
ical order and places the test cases into subfolders. If
each subfolder contains more than 40 test cases then
the test cases within each folder are again split up into
additional subfolders. The subfolders greatly reduce
the loading time of the test suite directory in the navi-
gation frame as well as reduce the time for the user to
find and jump to a specific test case or response from
that navigation frame. The user’s ability to navigate
through a suite in WebVizOr reduces the amount of
time it would typically take for the user to open all the
responses individually and process all of the responses
from the various oracles.

3.3 View Detailed Test Case Information

Web applications often respond differently based on
the parameters that were sent with the original HTTP
request. In order to analyze why certain HTML re-

2



Apps Description # Test Cases Total # Requests Avg. Case Size

Masplas Workshop registration/management 169 1,107 6.6 requests
DSpace Digital publications library 1,800 22,129 12.2 requests

Table 1. Example Web Applications

App Usage Initialization Time Open Browse Switch Test Case Switch Requests

Masplas Single 1 sec 1 sec 1 sec 1 sec
Dual 5 sec 1 sec 4 sec 4 sec

DSpace Single 5-15 sec 1 sec 1 sec 1 sec
Dual 22 sec 2 sec 5 sec 4 sec

Table 2. Time Costs

sponses have been received from a web application,
users may wish to view the original request. When
viewing a response from a test case, all of the detailed
requests that were made in that test case can be dis-
played in a lower pane. To further utilize the detailed
request pane, WebVizOr allows the user to click on
one of the detailed requests displayed and jump to the
corresponding response in the suite with those param-
eters.

3.4 View Oracle Comparator Results

Viewing rendered and raw forms of an HTML re-
sponse can be an inefficent way to analyze possible
faults between two responses, thus an essential part of
our tool is the ability to view sets of individual HTML
responses after they have been analyzed by various or-
acles. Each oracle comparator is run on the two re-
sponses being analyzed when a user navigates to that
pair of responses. WebVizOr displays the oracle pro-
cessed results in individual panes and highlights the
differences between them based on the results returned
by the comparator. The buttons to view individual
oracles are themselves highlighted if the oracle com-
parator detected differences. The user can then select
which oracle results they would like to view to deter-
mine if they believe the fault detected is truly a fault or
simply a false positive. None of the oracles we have im-
plemented can make this distinction themselves, thus
by viewing a combination of filtered oracle results in
WebVizOr the user may be able to determine if a real
fault was found.

3.5 View Fault Reports

WebVizOr is designed to utilize the vast amount of
information collected during web application testing to

generate fault reports for a given suite. Fault infor-
mation can only be utilized when using WebVizOr in
comparison view version, because two responses are re-
quired for oracle comparator results. The information
that WebVizOr uses is generated seperately from We-
bVizOr when each oracle is executed on the two sets of
responses from the same test suite. By using data that
has already been gathered WebVizOr can immediately
generate a fault report that might otherwise take days
to generate.

WebVizOr’s fault report includes results from all of
the responses and test cases in the suite. The user may
choose to view the fault report as a suite where all test
cases are listed with a summary of number of responses
with possible faults in them per oracle. With suite view
the report includes results to every oracle on every re-
sponse within the test suite. Otherwise, the user may
choose to view a fault report for a specified oracle stat-
ing which responses contained possible faults. Both
fault report views allow the user to jump to an indi-
vidual response or test case, which is then displayed in
the main WebVizOr window.

4 Implementation

WebVizOr is a web application itself. Our imple-
mentation allows WebVizOr to have a very friendly
GUI front end with a modular backend that will plug
into other alternative GUIs. The GUI front end is built
using JSPs and HTML that communicates with a Java
servlet backend. Oracles are executed from the Java
backend and are written in either Perl or Java. Bash
scripts are used to gather a list of information about
possible faults when various oracles are performed, and
this information is then used to generate the fault re-
port [4].

3



Usage Dynamic HTML Files Filtered Text Files Comparison Files

Single 2 0 0
Dual 2 2 per oracle 1 per oracle

Table 3. Space Costs

5 Evaluation

To evaluate the effectiveness of our tool and of the
four basic oracles we put WebVizOr to work on two
example web applications. See Table 1.

5.1 Time and Space Costs

There are lag times associated with different func-
tions of WebVizOr, some of which are affected by the
size of the test suite. These differences are apparent in
the comparison between DSpace and Masplas results;
DSpace is a much larger application and has a larger
test suite. Table 2 summarizes the timed results for
executing various functionality.

WebVizOr creates various temporary files during
run-time. The number of files is static for a given
usage of the tool (single application vs. dual appli-
cations) and does not fluctuate with test suite size.
Dynamic HTML files are generated once for each new
test suite. New filtered text files and comparison text
files are written over old filtered and comparison files
with each response that is viewed. If the tool is exited
correctly, these temporary files will be removed. Table
3 summarizes details of the temporary files.

5.2 Ease of Navigation

As described above, WebVizOr provides various
navigation options. The most versatile option is the
test suite navigation frame, which allows the user to
jump to any response in the test suite. To manage
potentially large test suites, test cases within the test
suite navigation frame are grouped into folders and
sub-folders. When running WebVizOr for the DSpace
test suite of 1,800 test cases it never took more than
five mouse clicks to arrive at a given response. For
Masplas it never took more than four. Both of upper
limits were the extreme cases, in which all of the folders
and sub-folders were collapsed.

5.3 Oracle Integration

Four basic oracles have been integrated into WebVi-
zOr that are executed and utilized to produce a fault

report that organizes the oracle results into an eas-
ily accessible form. The execution of all oracles on a
HTML response is completely automated and occurs in
current time when utilizing the tool. The fault report
requires that a specifically formatted file be generated
prior to tool usage that contains a summary of the or-
acle results. To accomplish this, the oracles must be
executed against the expected and actual results of the
entire suite. While this execution is time costly, it has
be automated by our research group.

In addition to the four basic oracles, we have begun
to experiment with new more complex oracles. Some
of these oracles have been successfully integrated into
a new version of the tool.

5.4 Extensibility

Adding a new Perl or Java-based oracle to the run-
time functionalities of WebVizOr is as simple as adding
a single line to the oracle configuration file. This will
not, however, integrate the new oracle into the fault
report. As mentioned above, the fault report is depen-
dent on a file that must be generated in advance. To
integrate a new oracle into the fault report, steps must
be taken to integrate the oracle into this pre-process
and to include the new results in the generation of the
fault report.

5.5 Portability

The issue of portability is still under investigation.
This tool was developed within the Linux environment
and if fully functional within that environment.

6 Conclusion and Future Work

In this paper, we have presented a new tool, WebVi-
zOr, for the automation of the fault detection in web
applications. WebVizOr supplies a way for web ap-
plication testers to verify different versions of HTML
responses since businesses, governments and consumers
are continually increasing dependency on these web ap-
plications. We have discussed the motivational back-
ground of our work including capture/replay testing
as well as HTML oracle comparator algorithms, our

4



implementation of WebVizOr and its features, and an
evaluation of WebVizOr current capabilities. Our fu-
ture work includes increasing WebVizOr’s portability
on various platforms and investigating additional ora-
cles or improving our current oracles.

References

[1] S. Chawathe and H. Garcia-Molina. Meaningful
change detection in structured data. In Interna-
tional Conference on Management of Data, pages
26–37. ACM SIGMOD, May 1997.

[2] S. Chawathe, A. Rajaraman, H. Garcia-Molina,
and J. Widom. Change detection in hierarchicaally
structured information. In International Confer-
ence on Management of Data, pages 493–504. ACM
SIGMOD, June 1996.

[3] James A. Jones, Mary Jean Harrold, and John
Stasko. Visualization of test information to assist
fault localization. In International Conference on
Software Engineering, pages 467–477. ACM Press,
May 2002.

[4] Sara Sprenkle, Emily Gibson, Sreedevi Sampath,
and Lori Pollock. Automated replay and failure de-
tection for web applications. In International Con-
ference on Automated Software Engineering (ASE),
pages 253–262. IEEE/ACM, November 2005.

5


