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Abstract
The creation of truly autonomous agents is one of the primary goals of Ar-
tificial Intelligence. A key characteristic of such an autonomous agent is the
ability to represent its environment internally and to extract meanings and
rules based solely on that representation. Internal representation of the envi-
ronment is relatively straightforward, but deriving meaning from that repre-
sentation in a truly autonomous fashion has proven difficult. One approach
to this setback that has met relative succes is the Sensory-Invariance Driven
Action (SIDA) algorithm (Choe & Bhamidipati (2004)). SIDA proposes that
an agent can extract visual meaning from an internal representation of its
environment, using sensory invariance as a criterion for directing the tra-
jectory of its gaze. Previous work has demonstrated that this is a plausible
and effective solution; however, it has been limited to synthetic and station-
ary images. Our work here integrates SIDA with a web-cam to demonstrate
the algorithm’s ability to provide agents with a method to interact with and
extract meaning from a natural environment that is being continuously up-
dated. The main contribution of this work is the integration of SIDA with
an autonomous agent that acts on a natural environment in real time. This
work also shows that the agent is capable of learning a set of rules based on
a static, synthetic environment, and successfully applying those rules to a
dynamic, natural environment.

Introduction

The Physical Agent

The main contribution of this research centers around the camera shown
above, the Logitech OrbitView webcam. The camera has pan and tilt ca-
pabilites that allow it to be directed to shift its gaze around the environment.
The SIDA algorithm was implemented using this camera as its autonomous
agent.

The Agent and its Environment

(a) a simple agent with sensory filters
and action primitives

(b) an SIDA-driven agent interacting
with a stimulus

The agent does not have direct access to the external stimuli and so must
determine the structure of its environment based on its own internal repre-
sentations of that environment. SIDA proposes that sensory invariance is a
key step in this process. The agent determines its sensory state and acts in
a manner intended to maintain that sensory state, allowing it to to construct
an internal representation whose structure closely represents the structure of
the environment.

SIDA Algorithm
• Agent is assumed to have a given number n (8, 16, or 32) of sensory

primitives and 2n corresponding motor primitives

• Agent is trained on a single natural image, which is preprocessed via
Gaussian convulution

• Agent then uses a stochastic Q-learning policy to train, resulting in a
reward table mapping sensory states to actions

• After training, the agent uses the reward table to explore and extract
meaning from natural stimuli

Training

Preprocessing
The following closely follows Choe & Smith (2006). Training input was
a raw image of a natural scene, 320 × 240 pixels. This image was con-
volved with a Difference-of-Gaussian filter D(x, y) = g(σ/2)(x, y)− g(σ)(x, y),
where gb is a Gaussian filter of width b. Filters were of size 15 × 15 for
all experiments. The initial image IR was convolved with D(·) to gener-
ate ID, which was then normalized and subtracted by its pixelwise mean.

The agent’s n sensory states were represented by a series of Gabor filters Gi

of size m×m), defined as:

Gθ,φ,σ,ω = exp−x′2 + y′2

σ2
cos(2πωx′ + φ), (1)

with σ = m/2, φ = −π/2, and ω = 2/m, x′ = x cos(θ) +
y sin(θ), and y′ = −x sin(θ) + y cos(θ). Values of θ were determined
by θi = (i − 1)π/n, where i ranged from 1 to n. Filter response
was a normalized vector s′ containing the dot-products of the input
block I and the Gabor filters Gi. Given a block of convolved input,
the current sensory state s was determined by s = arg maxθi,i=1..n s′i.

The image block on the left (part of a bookshelf) yielded the DoG-filtered
image seen in the middle, and matched most closely to the horizontally ori-
ented Gabor filter.

Q Learning

(a) Choe & Smith (2006)

The reward table above was generated during offline training by allowing
the agent to interact freely with its environment, recording the reward for
each action taken. Reward for performing action at is rt+1 = s′t · s′t+1, where
st is the filter response vector. Complete invariance between two states re-
sults in maximum reward, or rt+1 = 1.

1. Given current sensory state st, randomly choose an action at.

2. If at equals arg maxa∈A Q(st, a),

(a) then perform action at,

(b) else perform action at with probability proportional to Q(st, at).

3. Repeat until an action has been performed.

At each timestep t, given a current state (s, a), the agent chose an action a′

and updated the table at Q(s, a):

Qt(s, a) := (1− αt)Qt−1(s, a) + αt

(
rt + .85max

ai∈A
Qt−1(s′, ai)

)
, (2)

where s′ was the new sensory state reached via action a′, rt was the reward
acheived via a′ and αt = 1

1+vt(s,a) , with vt(s, a) representing the number of
visits to Qs,a.

Results

Image Blocks

(a) 0 deg (b) 0 deg (c) 90 deg

(a) 45 deg (b) 22 deg (c) 45 deg

(a) 68 deg (b) 68 deg (c) 90 deg

Above are nine 93× 93 image blocks, sampled in consecutive timesteps and
classified using n=8 Gabor filter orientations. Below each image sample is the
orientation classification assigned it by the learning algorithm. Very slight
changes in input can trigger dissimilar filters.

Gaze Trajectory

(a) n=8, pre-learning (b) n=8, post-learning

(c) n=16, pre-learning (d) n=16, post-learning

(e) n=32, pre-learning (f ) n=32, post-learning

The gaze trajectories after learning demonstrate more precise patterns and
travel in the same direction for longer periods of time, whereas the trajecto-
ries before learning travel in random paths, appearing to follow no guide-
lines. Because the nature of the agent allows it to roam freely, the images on
which the trajectories are overlaid are estimates, sample halfway through the
exploration process.

Conclusion

Discussion
The reward and sensory state data gathered show that the algorithm allows
the agent to maximize its reward by attempting to maintain its sensory state
as it moves from gaze location to gaze location. Immediate reward from
timestep to timestep is consistently high. The gaze trajectory data gathered
shows that after the learning process, the agent is able to direct its gaze in
longer, more consistent strokes that reflect the underlying stimuli. Adjust-
ing as the input changes, the agent is able to autonomously choose its next
action based only on its internal representation of the environment. Having
no direct access to the external stimuli, the agent’s actions correlate closely
to the structure of the environment.

Contributions
Previous work has demonstrated SIDA’s effectiveness in directing gaze tra-
jectory in a static environment, based on a synthetic image, and provided a
persuasive case for SIDA as a plausible method of autonomous grounding.
The main contribution of this paper builds on the results of that work by
integrating SIDA with an everyday real-time agent and providing concrete
examples of its ability to glean structural knowledge from natural, dynamic
input stimuli.
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