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Abstract—Creation of truly autonomous agents is a pri-
mary goal of Artificial Intelligence. An algorithm us-
ing sensory invariance as a criterion for motion response
has been previously proposed, and its effectiveness demon-
strated. We integrate this algorithm with a pan-tilt webcam
to demonstrate the algorithm’s ability to interact with a nat-
ural, dynamic environment.

I. I NTRODUCTION

One of the central goals of the Aritifical Intelli-
gence field is the development of truly autonomous
agents that are able to intelligently interact with their
environments, reacting to incoming stimuli appropri-
ately. For the agent to remain autonomous, its learn-
ing must be internal, with no rules or meanings fed to
it by the designer. The agent must receive a stimulus
from its environment, represent the stimulus inter-
nally, and subsequently extract meaning from repre-
sentation. We know that the brain is able to ground it-
self in this manner when it receives a visual stimulus;
the neurons from which the brain extracts informa-
tion about its environment do not have direct access
to that environment. Yet somehow, the brain is still
able to extract the structure and meaning of a visual
stimulus, based only on its internal sensory state. An
algorithm proposed in previous work suggests that
action driven by sensory state invariance is a possi-
ble solution to how the brain accomplishes this feat,
and is therefore a plausible approach for to take in
the design of an artificial agent. See [1] and [2]. In
our work here, we have implemented this proposed
algorithm, known as Sensory-Invariance Driven Ac-
tion (SIDA), on a webcam with pan and tilt capabili-
ties. The remainder of this paper details the design of
the agent, SIDA, and our experiments, and concludes
with a discussion of results and directions for future
work.

Fig. 1. A model of the agent and its environment [2]

Fig. 2. The SIDA model [2]

II. T HE AGENT

The agent is closely modeled after our knowledge
of the human brain. The brain has a set of sensory
filters to filter visual input, as well as a set of mo-
tor primitives. We have equipped our agent with a
similar set of sensory filters and motion primitives.
The sensory filters effectively remove the agent’s di-
rect access to the external stimulus, forcing it to act
based solely on its internal sensory state (Figure 1).
Figure 2 demonstrates SIDA in action. Note that
the actions taken by the agent reflect the underly-
ing structure of the input image, yet the ”brain” of
the agent has no direct access to the stimulus in its
raw form. We chose to implement this agent using
a Logitech OrbitView webcam as a physical repre-
sentation of the agent. The camera (Figure 3) sits on
a stable base and can be directed, via modifications
to its source code, to adjust its yaw and pitch (hori-
zontal and vertical tilt) to certain degrees. The cam-
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Fig. 3. The Logitech OrbitView camera used as an agent

Fig. 4. Gabor filters for an agent with 8 sensory states [2]

era constantly refreshes its input, meaning that our
agent was effectively interacting with a live, natural
environment. We trained the camera using the pro-
cess described in the next section, and then allowed
it to explore its environment freely, recording its in-
put stimuli and corresponding gaze trajectories. The
sensory filters found in the human brain were mim-
icked within our agent using a series of oriented Ga-
bor filters, as suggested in [2]. The agent is givenn
sensor filters at ”conception,” withn=8, 16, or 32 for
the various experiments. The filters are represented
visually in Figure 4; see [2] for a description of the
mathematics behind these filters. Each sensory filter
corresponds to a pair of motion primitives. For ex-
ample, the vertical filter corresponds to movement in
the direction of 90 degrees or 270 degrees.

III. T RAINING THE AGENT

This section closely follows the manner outlined
in previous work; see [2] for details. Training was
performed off-line, using a natural, static image. The
reward table generated during training was then used
in the experiments outlined below.

A. Preprocessing

The first step in training was to process the input
stimulus in a fasion similar to the fashion in which
the brain processes visual stimuli. [2] proposes us-
ing a Difference-of-Gaussian filter for image pre-
processing, and our work uses the filters described
in detail there. Figure 5 shows the visual stimulus
used for training, after being filtered.

Fig. 5. A DoG-filtered image [2]

Fig. 6. An ideal Q table for an agent withn=4 sensory states and 8
corresponding motor primitives [2]

B. Learning

As proposed in [2], we used a Q-learning algo-
rithm to train the agent. A sample Q table is shown
in Figure 6, for an agent with only 4 sensory states.
The table is initialized to random values, and updated
using the following algorithm:

1) Given current sensory statest, randomly
choose an actionat.

2) If at equalsarg maxa∈A Q(st, a),
a) then perform actionat,
b) else perform actionat with probability

proportional toQ(st, at).
3) Repeat until an action has been performed.

IV. EXPERIMENTS AND RESULTS

After training was completed offline, the resulting
reward tables were fed into the agent for integration

Fig. 7. An input block, its DoG filter, and its corresponding sensory
state
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(a) 0deg (b) 135deg (c) 135deg

(d) 135deg (e) 135deg (f) 135deg

(g) 135deg (h) 135deg (i) 90 deg

Fig. 8. Nine consecutive image inputs and their corresponding sen-
sory states for an agent with 8 sensory filters

with the camera. The agent/camera was pointed in an
initial direction and then allowed to interact freely
with its environment for 1,000 timesteps, recording
its gaze trajectories. The environment was a typical
office environment, containing desks, computers, file
cabinets, and so forth. (The environment at the loca-
tion at which the camera was initially directed can
be seen in Figure 7, underlying the gaze trajectory
data.) The camera recorded a320×240 pixel image,
and sampled a93 × 93 chunk of that image, cen-
tered at its gaze location. The input was processed in
the manner described in the previous sections. Using
that filtered input, the agent determined its current
sensory state and the camera, using the reward ta-
ble generated previously, determined the optimal ac-
tion to take. The camera’s gaze was shifted accord-
ing to that action, and the image was re-sampled, be-
ginning the process again. Figure 7 shows a sample
input block (part of a bookshelf, in this case), its cor-
responding DoG-filtered image, and the Gabor filter
determined to most closely match.

Figure 8 shows the93× 93 image chunks for nine
consecutive timesteps of the camera’s exploration of
the environment after training. The sensory state de-
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Fig. 9. Change in sensory state over 100 timesteps in an agent with 8
sensory filters
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Fig. 10. Reward over time in agents before and after learning. A value
of 1 represents maximum reward, -1 represents minimum reward.

termined to correspond to the current input is also
shown. Note that the agent successfully maintains
its sensory state in steps (b)-(i). The sensory state
here seems to correspond to the main feature of the
image blocks, which is the arm of the chair. The ac-
tions taken by the camera will move along a line cor-
responding to 135 degrees, thus reflecting the struc-
ture of the input. Figure 9 shows the sensory state
over the first 100 timesteps for the agent with 8 sen-
sory states, before and after learning. After the learn-
ing process, sensory states are clearly maintained for
longer durations, and the changes that do occur are
more gradual.

Analyzing the reward from timestep to timestep
shows that the agent is able to maintain a relatively
high rate of reward as it re-directs its gaze. In the
graphs in Figure 10, reward is determined to be the
degree of sensory invariance from one action to the
next. A reward of 1.0 is maximum, representing no
change in the sensory state, while reward of -1.0 is
minimum, representing a complete change in sen-
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(a) 8 orientations, pre-
learning

(b) 8 orientations, post-
learning

(c) 16 orientations, pre-
learning

(d) 16 orientations, post-
learning

(e) 32 orientations, pre-
learning

(f) 32 orientations, post-
learning

Fig. 11. Gaze trajectories for agents with 8, 16, and 32 sensory states,
before and after learning

sory state. The mean reward for the agent before
learning was .4496, while the mean reward for the
agent after learning was .8992. The reward is rea-
sonably high before learning; this can be accounted
to the fact that the camera’s movements were limited
to a very small distance, effectively narrowing the
amount of variance possible from action to action.
However, there is a significant jump in the average
reward after learning, indicating that the agent has
learned to maximize its reward efficiently.

The most significant results lie in the patterns
of the camera’s gaze trajectories as it directs it-
self around the environment. Figure 11 shows the
camera’s gaze trajectories before and after learn-
ing, mapped onto a visual representation of its en-
vironment. Before learning, the trajectory is random

and undirected, and does not appear to correspond
with the underlying image. After learning, though,
the trajectories follow a more intelligent pattern and
are more directed. It is important to note here that
the background image is an estimate; as the cam-
era shifted its center of gaze, the visual input shifted
accordingly. As the number of sensory filters grew,
the range of possible movements grew, allowing the
camera more freedom in its explorations and allow-
ing it to roam further from the direction in which it
was intially pointed. This means that the gaze tra-
jectories overlaid on the image do not correspond di-
rectly to the background. However, it can still be
seen quite clearly that the agent is able, after learn-
ing, to direct its gaze in more consistent trajectories.
The agent equipped with 8 sensory states shows par-
ticular success in modeling its input. The gaze tra-
jectories here reflect the structure of the underlying
stimulus convincingly. One oddity to note is that
when the camera reached the edge of the physical
limits of its horizontal or vertical gaze, it was in-
structed to jump back slightly, often re-locating it-
self in a spot very close to where it was previously.
It would then take the same sequence of actions that
it did upon previously visiting this area of the image,
resulting in the seemingly parallel lines seen in (d).
Regardless of this problem, though, it is clear from
comparisons of the agent before and after learning
that the camera is gleaning structural knowledge of
its environment and acting appropriately, based only
on its internal sensory state.

V. CONCLUSIONS

Our work here has demonstrated the effectiveness
of SIDA when integrated with a physical agent, in
this case a camera with pan and tilt capabilities. Our
results show that the algorithm can be fully inte-
grated with an agent in a manner that allows it to in-
teract intelligently with a live, natural environment.
Through the camera, the agent is able to maintain a
high degree of sensory invariance as it explores its
world, and is thus able, through its actions, to map
the structure of the input–using only its internal sen-
sory state to guide its gaze, and thus maintaing a
state of autonomous grounding. The agent, trained
using SIDA and integrated with a camera, was able
to successfully interact with a live environment based
only on its training on a static (and very dissimilar)
image. These are the main contributions of our work.
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A possible direction for future work is to allow the
camera to train in real-time, updating its reward table
on the fly as it interacts with a live, constantly chang-
ing environment. This could potentially allow for
more realistic reward tables and more precise map-
pings of gaze trajectories to input.
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