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Abstract 

Using principal component analysis, cyclic coordinate descent, and 
conjugate gradient minimization, physical conformations of HIV-1 
protease were produced that captured the opening and closing 
motions of the flaps, thus modeling the flexibility of the binding 
site. 

 
1. Introduction 
Proteins perform a central role in many cellular functions, from providing structural support to 
assisting in chemical reactions.  As such, understanding cell behavior through the study of 
molecular interactions remains a fundamental issue in biology.  Fischer proposed a lock-and-key 
model, in which the protein and substrate fit each other in the same way a lock complements a 
key.  However, experimental evidence has shown that a more accurate representation may be 
found in Koshland’s induced-fit model, in which the protein and substrate change conformation 
to facilitate binding.  Despite this support for protein flexibility, most current docking methods 
consider proteins as rigid structures in order to reduce computational complexity, thus limiting 
their use in applications such as drug design and discovery.  We seek to model this flexibility to 
provide better representations with which we can analyze protein interactions. 
 
2. Problem Statement 
Given a starting structure and the major modes that span the conformational space of a protein, 
generate a set of conformations to capture the flexibility of the protein.  That is, capture the most 
important motions by starting from the initial structure and following in the direction of the 
major modes.  Our work is performed around the native structure, as analysis fails if we are far 
from the native. 
 
We focus our analysis on HIV-1 protease, a virus protein that assists in the replication of HIV.  
Much work has been done in designing drugs to block its active site and thus prevent the virus 
from replicating.  Furthermore, the size of the protease is computationally manageable but large 
enough to address important problems, and there is abundant data characterizing this protein on 
which we can validate our results. 
 
3. Previous Work 
The most accurate representations of protein motion are obtained through simulation techniques 
such as molecular dynamics and Monte Carlo.  Molecular dynamics uses classical Newtonian 
equations to compute particle motion while Monte Carlo performs a series of random steps to 
generate a series of conformations.  Both methods are computationally intensive, however, 
particularly for molecules with many degrees of freedom.  For example, molecular dynamics can 
only capture limited protein motion, on the scale of nanoseconds, making it unsuitable for use in 
applications such as protein docking, as binding interactions take place on a longer time scale 
with larger-scale motions. 
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More recently, robotic kinematics have been applied to the study of proteins, reducing molecules 
to robotic manipulators, with atoms the equivalent of joints and bonds the equivalent of links.  
Singh, et. al. [SLB99] and Amato, et. al. [ADS04] both use probabilistic roadmaps to sample 
possible conformations and generate a collision-free, i.e. low-energy, path from a starting 
configuration to a given goal. 
 
Other approaches to modeling protein flexibility have included soft receptors, selection of 
specific degrees of freedom, multiple receptor structures, and collective degrees of freedom 
[She03].  Furthermore, many techniques have relied on dimensional reduction in hopes of 
simplifying the problem and thus the computational complexity.  The most common method uses 
principal component analysis (PCA) to identify the major modes of motion of the protein.  Moll, 
et. al. perform an expansive search by generating Gaussian perturbations in major mode space 
and minimizing.  Shehu uses cyclic coordinate descent (CCD) [CD03, Lot04] and minimization 
to generate conformations [She04], and we draw upon her approach in our algorithm. 
 
4. Description of Algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.0. Algorithm flowchart. 
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4.1. Principal Component Analysis and Feature Definition 

The most important principal components have direct physical interpretations, representing 
concerted motion of atom groups.  In the case of HIV-1 protease, the first eigenvector 
corresponds to the opening and closing motion of the flaps, respectively exposing and sealing the 
binding site.  We choose our features to be residues along the flaps, which non-coincidentally 
have the largest displacements (Figure 2).  The positions of these features are moved along the 
PCA at each step to capture flap movement. 

 
 
 
 
 
Figure 4.1. Atom displacements along the 
first PCA.  Red circles mark the indices 
of our chosen features (between residues 
41 and 61 and residues 140 and 160). 
 
 
 
 
 
 

4.2. Spatial Constraints 

Analysis of PDB structures has shown that bond lengths and angles show little variation among 
structures.  Therefore, we assume a rigid geometry model, in which only the bond dihedrals are 
used as degrees of freedom.  This reduces the complexity of our problem and allows us to use 
cyclic coordinate descent (CCD) [CD03, Lot04] to move features to their constrained positions.  
CCD is an iterative, heuristic approach to solving inverse kinematics problems and was first 
developed for use in the field of robotics.  It has since been applied successfully in 
bioinformatics, allowing researchers to close protein loops irresolvable through X-ray 
crystallography.  CCD gradually moves an atom to its constrained location by adjusting one 
dihedral angle at a time, always trying to minimize to closure distance.  Because CCD turns the 
problem into a series of single-variable minimizations, it is also computationally fast and 
analytically simple. 
 
We should also note that we use two different versions of CCD, depending on if we wish to 
satisfy orientation as well.  Features along the flaps to be moved along the motion vector use the 
simpler version of CCD, in which we only attempt to satisfy the carbon-alpha position of the 
residue.  Features at the edges of the flaps we want to keep in its native conformation under the 
assumption that this will provide the lowest-energy.  Thus, we constrain the orientation of these 
residues as well; that is, we try to satisfy the nitrogen, carbon-alpha, and carbon positions. 
 
4.3. Energetic Constraints 

We use a simple probability function to determine energetic feasibility, accepting a conformation 
if its energy is within 600 kcal/mol of the native energy.  Because flap displacement is only valid 
in a small neighborhood, we also perform a full minimization of the CHARMM energy using 
conjugate gradient at every step.  Since we only define features on the protein backbone, this 

 



minimization also helps fix any sidechains, as they are kept rigid during CCD.  Minimization 
runs the risk that we return to our original structure, so we limit the number of minimizations and 
assume that the closest conformation of low-energy has the flaps opening or closing. 
 
4.4. Optimization 

In order to minimize the time to generate a conformation, we had to balance the time taken 
closing the loops with CCD and the time taken minimizing energy with conjugate gradient.  
Increasing the maximum number of steps in CCD forces the rest of the protein to assume a more 
native conformation, reducing the overall energy and thus reducing the number of iterations we 
have to apply minimization.  However, it also increases runtime linearly as we continue to 
update dihedral angles.  On the other hand, relaxing minimization constraints increases the 
likelihood that we will accept the final conformation and not have to redo any conformations, but 
each additional minimization step takes quadratic time in the number of atoms. 
 
To further reduce runtime, we also relaxed the threshold on internal flap features.  Unlike the end 
loop features that serve to keep the rest of the protein in the native conformation, we use these 
features to model motion and thus only a few CCD steps should be necessary to move these 
residues to an appropriate position near that specified by the motion vector. 
 
4.5. Backtracking 

Moving along the motion vector will ultimately result in non-physical conformations, as the flaps 
collide with other parts of the protein or are unable to be pushed further while keeping the rest of 
the protein native.  Because we use random path permutations in CCD, a generated conformation 
for any given step is non-deterministic.  Thus, if we encounter a high-energy conformation, 
rather than trying to move against the same energy barrier, we implemented a simple 
backtracking technique in which we rewind to a previous conformation and try to push from 
there, hopefully generating conformations that overcome the previous energy barrier. 
 
5. Experimental Results 
We used the structure of 4HVP from the Protein Databank and performed a full minimization to 
arrive at our native structure.  Furthermore, we used only the first major mode in our attempt to 
model the flap movement of HIV-1 protease, opening and closing the flaps in a way that kept the 
protein stable. 
 

5.1. Flap Movement 

Summary results for our method are provided in tables 5.4, 5.5.1, 5.5.2, and 5.5.3, detailing the 
movement of the conformation with the highest flap all-atom RMSD for a given run.  Because 
we only updated internal features, movement is concentrated in the flaps while the rest of the 
protein remains in a native-like conformation.  Also, as expected, we were able to generate 
conformations with higher flap RMSDs when opening the flaps as opposed to closing the flaps, 
as the former motion is less energetically constrained by the rest of the protein.  Whereas Shehu 
was able to recover energetically feasible conformations with total all-atom RMSDs up to 0.23 Å 
in the closing direction of the flaps and up to 0.56 Å in the opening direction [She04] using a 
step size of 0.1, we recovered conformations up to 1.12 Å in the closing direction and up to 1.60 
Å in the opening direction.  A backbone representation of our recovered conformations is 
provided in figure 5.1. 
 



 
 
 
 

Figure 5.1. Backbone 
representation of flap movement 
along the first PCA.  Features 
used are shown as gray spheres. 

 
 
 
 
 
In contrast to Shehu’s results, our energy landscape is non-symmetric, with open-flap 
conformations tending to have lower energies than close-flap conformations with a similar 
RMSD.  However, we do observe a funnel-like shape, supporting the existence of a well-defined 
and stable native structure. 
 
5.2. Energy Landscape 

Some energy landscapes are provided in figures 5.4.1 and 5.5.1.  We observe a funnel-shape, 
supporting the existence of a well-defined and stable native structure.  Open- and close-flap 
conformations are non-symmetric due to varying energetic constraints, and we see that we are 
able to capture more conformations around the native. 
 

5.3. Efficiency 

On average, it took about thirty seconds to generate a single conformation, with about twelve 
seconds spent on CCD, about fifteen seconds spent on minimization, and the rest spent on other 
processes such as energy computation.  The time to generate a conformation increased from 
fifteen seconds for the first conformation to thirty seconds once the number of minimization 
steps became more constant.  If rewinding was necessary, the time to generate the conformation 
would also be severely higher due to time in randomizing the dihedrals beforehand and in 
generating the cloud.  
 

5.4. Multiple Runs 

Run Flap All-Atom 
RMSD (Å) 

Flap 
Backbone 
RMSD (Å) 

Flap Sidechain 
RMSD (Å) 

Rest All-Atom 
RMSD (Å) 

Total All-
Atom RMSD 

(Å) 
0 3.125 2.856 3.188 0.483 1.117 
1 3.014 2.705 3.086 0.446 1.070 
2 2.747 2.492 2.807 0.486 1.007 
3 2.966 2.729 3.022 0.488 1.072 
4 2.888 2.674 2.939 0.489 1.049 

Table 5.4. Results of generating conformations by defining our features to be between 
residues 41 and 61 and between residues 140 and 160.  Multiple runs closing the flaps at 
a step size of 0.1. 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because our algorithm is non-deterministic due to randomization in CCD paths and in dihedral 
angles on backtracking, multiple runs of the same process will yield slightly different results.  
However, the variation in RMSDs is minimal, on the order of what could be attributed to 
conformational noise. 
 

5.5. Effects of Process Parameters and Backtracking 

We provide a short analysis of the effects of different process parameters and the value of 
backtracking.  Randomization deviation, maximum CCD steps, and maximum minimization 
iterations were also investigated but are not detailed as they affect process efficiency rather than 
conformation output. 
 
5.5.1. Effects of Step Size 

 Step 
Size 

Flap All-
Atom RMSD 

(Å) 

Flap 
Backbone 
RMSD (Å) 

Flap 
Sidechain 
RMSD (Å) 

Rest All-
Atom RMSD 

(Å) 

Total All-
Atom RMSD 

(Å) 
Close 0.1 3.125 2.856 3.188 0.483 1.117 
 0.25 2.235 2.104 2.266 0.359 0.804 
 0.5 2.097 2.032 2.113 0.337 0.755 
 1.0 2.289 2.166 2.319 0.298 0.798 
 2.5 2.159 1.993 2.198 0.312 0.764 
Open 0.1 4.668 4.027 4.814 0.517 1.599 
 0.25 3.421 3.111 3.494 0.356 1.166 
 0.5 3.340 3.171 3.454 0.375 1.164 
 1.0 2.351 2.030 2.424 0.247 0.802 
 2.5 1.643 1.434 1.691 0.240 0.582 

Table 5.5.1. Results of generating conformations by defining our features to be between 
residues 41 and 61 and between residues 140 and 160. 

 

Figure 5.4.1.  Energy 
landscape of HIV-1 
Protease.  Multiple 
runs of the same 
process show roughly 
the same behavior. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In general, we are able to push the flaps further along the PCA if we use a smaller step-size.  
This is not unexpected as closer closure distances cause CCD to make smaller changes to 
dihedral angles to satisfy spatial constraints.  These minor dihedral adjustments are less likely to 
cause radical atom shifts further down the backbone, resulting in fewer steric clashes.  A smaller 
step-size provides the further advantage of generating more conformations, thus providing a 
more accurate depiction of the energy landscape.  However, more conformations also entail 
longer processing time to simulate the same flap movement. 
 

5.5.2. Effects of Feature Definition 

 Step 
Size 

Flap All-
Atom RMSD 

(Å) 

Flap 
Backbone 
RMSD (Å) 

Flap 
Sidechain 
RMSD (Å) 

Rest All-
Atom RMSD 

(Å) 

Total All-
Atom RMSD 

(Å) 
Close 0.1 2.982 2.892 3.004 0.660 1.156 
 2.5 2.551 2.437 2.578 0.551 0.982 
Open 0.1 2.353 1.901 2.452 0.479 0.891 
 2.5 2.517 2.229 2.584 0.411 0.909 

Table 5.5.2. Results of generating conformations by defining our features to be between 
residues 40 and 60 and between residues 139 and 159. 

 
It is interesting to note the effect of feature definition on our results.  Table 5.5.1 agrees with our 
expectations in that we are able to recover more open-flap conformations as the flaps are less 
energetically constrained by the rest of the protein.  However, table 5.5.2 shows that by moving 
all features one residue back (though still within the flaps), we are now able to generate more 
close-flap conformations.  This second choice of features may generate conformations stressing 
the unfavorable interactions between the beta sheets of flaps and the neighboring anti-parallel 
beta sheets. 
 

Figure 5.5.1.  Energy 
landscape of HIV-1 
Protease.  We recover 
conformations with 
higher RMSD in the 
opening direction.  
We can also push 
further along the 
vector is we use a 
smaller step size. 

 



5.5.3. Effects of Backtracking 

 Step 
Size 

Flap All-
Atom 

RMSD (Å) 

Flap 
Backbone 
RMSD (Å) 

Flap 
Sidechain 
RMSD (Å) 

Rest All-
Atom 

RMSD (Å) 

Total All-
Atom 

RMSD (Å) 

Percent 
Increase 

Close 0.1 2.367 1.904 2.468 0.420 0.868 32.0 
 0.25 2.179 1.927 2.237 0.370 0.792 2.57 
 0.5 2.078 1.972 2.103 0.343 0.751 0.914 
 1.0 1.709 1.647 1.724 0.261 0.610 33.9 
 2.5 1.152 1.110 1.163 0.230 0.434 87.4 
Open 0.1 3.339 2.634 3.492 0.357 1.140 39.8 
 0.25 3.139 2.791 3.219 0.328 1.070 8.98 
 0.5 2.005 1.685 2.077 0.177 0.675 66.6 
 1.0 1.197 1.647 2.015 0.156 0.652 96.4 
 2.5 1.134 1.199 1.369 0.175 0.467 44.9 

Table 5.5.3. Results of generating conformations by defining our features to be between 
residues 41 and 61 and between residues 140 and 160.  Same experiments as for table 
5.5.1 but exits the process when a high-energy conformation is generated.  Efficiency of 
using backtracking is provided in the rightmost column, which gives percent increases in 
flap all-atom RMSD going from table 5.5.3 (where backtracking is not implemented) to 
table 5.5.1 (where backtracking is implemented). 

 
Backtracking provided varying gains in output, with increases in flap all-atom RMSD ranging 
from 0.914 % to 96.4 %.  In general, backtracking for larger step sizes only works the first few 
times, as continual backtracking rewinds to the same range of conformations and encountering 
the same energy barrier.  
 
Summary 
We provide an approach to generating physical conformations of a protein along its most 
important motions, thereby modeling the flexibility of the binding site.  We satisfy spatial 
constraints using cyclic coordinate descent and take into account energetic constraints using 
conjugate gradient minimization and a simple backtracking mechanism.  Our algorithm has been 
demonstrated on the first principal component of HIV-1 protease to simulate the opening and 
closing of the flaps. 
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