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I. Description 

We created different vector fields on the surfaces of different polygonal meshes, 
based on boundary conditions, and visualized the vector fields using a texture-based 
method that advects a noisy texture in the direction of the vector field.  The boundary 
conditions consist of a number of sinks and sources.  Each of these is set with a certain 
scalar value, while all other points are interpolated based on these, to create a scalar field 
from which a gradient vector field is created.  Vectors in the field point away from a 
source and into a sink.    
 
II. Background/Motivation 

There are many different uses of vector fields on surfaces.  Many of these have 
been studied and implemented.  These applications include such texture synthesis, 
sketching illustrations, hair position, liquid flow, and more.  [Dinh 2004] shows, for 
example, how texture mapping uses a vector field to advect properties from one model to 
another.  For fluid simulation, [Zhang 2004] explains that the external force is a vector 
field.  It does not need to correspond to actual physical phenomena and it can exist on 
synthetic 3D surfaces.  It is interesting how texture synthesis uses vector fields.  When 
performing texture synthesis on a rectangular grid the values of the texture are filled from 
left to right, top to bottom.  On a surface, however, the vector field gives an order and 
direction to follow for synthesizing textures on surfaces [Turk 2001].  Our purpose was to 
create a program to experiment with different vector fields and modify the fields through 
control parameters, including sources, sinks, etc. in order to use them for applications of 
vector field on surfaces.   
 
III. Related Work  

The related works are methods for creating a vector field, visualizing vector 
fields, and applications using vector fields.  Many methods have been developed to create 
a vector field.  [Zhang 2004] created a vector field design system for planar domains and 
3D surfaces, which allowed the user to create a vector field first using basis fields, then 
make geometric and topological changes, and finally move singularities for the desired 
result.  According to [Zhang 2004] most existing vector field design systems generate 
gradient vector fields, as did [Dinh 2004], which we will be using, or incompressible 
vector fields.   

Many applications of vector fields have been studied. [Zhang 2004] displays 
several of these including painterly rendering, pencil sketch illustration of smooth 
surfaces, and example-based texture synthesis.  [Van Wijk 2003] mentions that 
visualizing a vector field plays a significant role in Computational Fluid Dynamics 
important in weather, climate, industrial processes, cooling, heating, etc.   

Many methods of visualization of vector fields have been developed.  [Van Wijk 
2002] mentions several of these.  For example, arrow plots consist of arrows placed 



discretely and sparsely on the surface, but it is difficult to visualize the continuous flow 
because of the discrete nature of the plot.   Stream lines and advected particles are more 
informative than arrow plots but both have the problem that you cannot place particles or 
stream lines everywhere.  You can, however, visualize the flow a bit better than arrow 
plots because the flow lines are continuous.  Better methods for visualizing continuous 
vector fields are spot noise textures and line integral convolution.  These methods can 
show a denser flow field.  They are both, however, computationally expensive.  The 
method we use, developed by [Van Wijk 2003] uses graphics hardware and methods, 
such as blending, to make the visualization of the flow field more efficient. 
 
IV. Theory 
 
Vector Field Creation 

A Vector Field on two (or three) dimensional space, as defined by  [Dawkins 
2005] is a function   that assigns to each point (x, y) ( or (x, y, z) ) a two (or three) 
dimensional vector given by  (  ).  An example is shown below. 

 
Vector fields have been studied in computer graphics and applied to both two and 

three dimensions.  One application is in the medical field, as shown by [Yezzi 2001], 
(Tissue Gridding Using a PDE Approach) in which tangent vectors are used to determine 
tissue thickness and therefore the clogging of blood vessels.  The approach this paper 
takes to calculating vector fields was then used by [Dinh 2004] to transfer texture from 
one shape to the next in a shape transformation.  This method creates a mapping between 
surfaces to transfer attributes from one surface to the next.  To create the mapping, we 
begin with starting and ending contours, or three dimensional shapes.  In two dimensions 
plus a time dimension, we begin with starting and ending contours, a and b, with start 
time at a equal to 0, end time at b equal to 1, and time interpolated between the two.  We 
then create a scalar field from a to b.  The gradient of this field becomes the vector field.  
[Dinh 2004] uses heat diffusion applied to the scalar field in order to distribute the vector 
field more uniformly.  We apply the same concepts of finding a scalar field, diffusing it, 
and calculating its gradient vector field, except that we use starting and ending points 
instead of contours, which form our sources and sinks.  Vectors in the field point away 
from a source and into a sink.     
 
Vector Field Visualization 

In order to display our vector field, we use [Van Wijk 2003]’s algorithm, as 
applied to curved surfaces.  The algorithm begins by projecting a polygonal mesh to the 
frame buffer in the first time step.  The image is then captured and stored for the next 



time step.  The next frame will look like the previous, except distorted in the direction of 
the vector flow a small distance, based on a set small time step.  We are in actuality 
advecting the information along the vector field.  To prevent the image from disappearing 
entirely, it is continuously blended with a noise image.  To apply this to a surface, we 
need to distinguish between the surface and the background, using depth testing.  We 
create a rectangle covering the entire screen with its depth set near the far clipping plane, 
texture mapped with the noise pattern, and only blend it with the screen if the depth of 
what is already on screen (the rendered model) is less than its own depth.  That is, we are 
only blending the noise with the model drawn already, not the background.  We then 
apply shading, in order to see the surface in three dimensions.  On a curved surface, the 
shading, as well as keeping both the image and background in shades of grey help to 
create contrast and prevent blending of the background color with the foreground surface 
as the noise texture is advected.      
 
V. Implementation 

I started off with code from my mentor and a former student of hers.  One 
program read in data from a file and stored it in a certain structure, in order to render the 
model with lighting (figure 1), with a texture, and then as a polygonal mesh.  The second 
program read in data from a file, stored it in a different data structure, and with a set start 
and end point, calculated a vector for each vertex, therefore creating a vector field.  I 
added the needed methods for creating the scalar field, the gradient vector field, and for 
diffusion, and associated global variables from the second file to the first, and changed 
any necessary data structures to match properly.  This gave us a program that reads in 
data from a file, stores it in a structure, calculates a vector field, and renders the above 
mentioned figures.        

 
Figure 1: Original dolphin model, before vector field creation. 

I then changed the code so that it would be able to use any number of start and 
end points to calculate the vector field.  These “start” and “end” points are really sources 
and sinks.  I calculated the scalar value at each vertex, in terms of its distance from each 
source and sink, and the values of the source and sink (i.e. [0, 1]).  I drew each point’s 
vector in order to display the stationary vector field (figure 2).   



 
Figure 2: Polygonal mesh of dolphin model with vector field shown. 

After this I applied the algorithm from [Van Wijk 2003] so that I could display the vector 
field as an animated noisy pattern.  This had several steps:    
 

1. Initialize the texture image Ft with a Background color, B.  To do this, I cleared 
the color buffer to be grey and cleared the depth buffer. 

2. Initialize the image F with B; That is, my entire screen is the image (which we 
will be treating like a texture) each particle of which I want to project along the 
vector field, to display its motion.  So, I created a blank texture earlier, assigning 
it room in memory, where we will store our image.   

3. Calculate the texture coordinates ti = (tix, tiy) for all vertices.  This must be 
recalculated whenever the image rotates or moves in any way.  We calculate these 
by using the equation ti = T(ri - vi∆t), where ti represents the texture coordinates, T 
represents projection, ri represents a point, vi is the vector field at that point, and 
∆t is the time step for each blended image.  This means that this equation is the 
projected position of the previous point on the path line through a vertex, ri.  

4. Render the mesh, texture mapped with Ft, without shading.  
5. Blend in fresh noise, G.  To do this, I used a sample function provided by [Van 

Wijk 2003].  It calculates the texture coordinates of a “noise” image for each time 
step.  I then texture mapped this onto a rectangle that covered the entire screen, 
but whose depth was almost as far back as the viewport far clipping plane.  I set 
the depth so that it would only render the rectangle where its depth was greater 
than what was on the screen, the image we want.  I enabled blending based on the 
alpha set on the noise image.  Then I captured this image and copied it to the 
original texture.  

6. Store the result in Ft.  I used an openGL command to copy the current image to 
the original blank texture we created.  

7. Render the mesh shaded and blend it with the image.  To do this, I first tried to 
render a shaded image and blend it with what was on the screen.  This was not 
working well, so instead I rendered the shaded image, texture mapped with the 
texture I just created. 



 
 
VI. Experimentation and Results 
 
1. I experimented with several different visualization effects.  I changed lighting 
conditions by increasing ambient and diffuse light in order to make the scene brighter, 
despite the optimal grey colors.  I experimented with changing the direction of the light, 
but it made little difference.   
 
2. I then attempted to change the size and frequency of the noise pattern, which were set 
to 64 and 256 respectively.  When the texture is as small as 2 by 2 it is just stripes in the 
image. At 4 a regular, blotchier patter begins.   By 8 the blotches are blurrier and less 
regular.  By the time I tested 16, it looked much the same as any size beyond that.  I tried 
64, 128, and 256 for the size of the noise pattern and there were only very slight 
differences.  These results are displayed in figure 4. 

 
As for the frequency, I tried powers of 2 from 6 to 10, and the higher the modulus 
number, the noisier the image got, as shown in figure 5. 

         
Figure 4: Result of noise texture after changing its size to: 2, 4, 8, 16, and 256. 

   
Figure 3: (Left) Dolphin model with noise texture.  (Right) Dolphin model with noise advected 
in direction of the vector field. 



 
  
3. I also tested different positions of the source and sink.  In the figures below sources are 
marked by red circles and sinks by blue circles.  I began by putting one source at the min 
z value, which was the right side of the tail fin, and one sink at the max z value, which 
was the tip of the dolphin’s nose.  This caused the vector field to go smoothly from the 
source, right side of the fin, to the sink, the nose, along the surface (figure 6).   

 
If I put the sink in the middle of the figure, leaving the source at the tail fin, the 

vectors from either side flow along the surface toward the top center fin.  There is no 
source or sink near the tip of the nose now, but due to the calculated vector field based on 
the source and sink, it is still pulled toward the sink (figure 7).   

         
Figure 5: Result of noise texture after changing its frequency to 64, 128, 256, 512, and 1024. 

 
Figure 6: Noisy vector field on dolphin with source at its fin and sink at its nose. 



 
If I had two sinks positioned with no source between them, the vectors seemed to 

be unsure which one to go towards and most ended up somewhere between the two.  In 
figure 8 (Right), a divide seems to occur by the eye, to the left of which, the field points 
toward the left (where one sink is) and vectors to the right points to the other sink.   

  
  

 
Figure 7: Noisy vector field on dolphin with source at its tail fin and sink at its top fin 

                   
Figure 8: Example of vector field between two sinks 



4. Number of sources and sinks  
I tested the effects of several sources or sinks.  A source from one point on the fin, 

as opposed to both is shown in figure 9.  If the sources are both tips of the tail fin and the 
tip of the top fin, the flow on the back fin changed slightly, but the general flow from 
sources to sink remained the same.   

 
  If I put one source at the tail fin, and two sinks, the nose and top fin, it drastically 
changed the direction of the vector field, because not all vectors point toward the nose 
anymore.   

 
  
 

   
Figure 9: Tail fin of the dolphin displayed with one source at right tip of tail fin (Top) and 
with two sources at both tips of tail fins (Bottom) 

   

 
Figure 10: Dolphin model with one source at tail fin, one 
sink at top fin, and one sink at nose



5. I also experimented with changing the values of sources and sinks.  Sources do not 
always have to be set with a scalar value of 0. Given three sources- each tip of the tail fin 
and the tip of the top fin- and one sink- the nose- I changed the value of one of the 
sources to .5.  There is only a slight difference from when the sources were all 0 and sink 
was 1.  Just near the top fin, the source that I set to .5, the vector field seems pulled 
slightly more upward.     

 
 
When the top fin and nose are sinks and the tail fin’s tips are sources, with the top fin 
equal to .5, the results are similar.   

 
If the value of the sink at the nose is .5 and the top fin is 1, this causes a stronger pull 
toward the top fin and the pull from the nose to be practically non existent as shown in 
figure 13. 

 
 

   
Figure 11: Dolphin model with value of source at top fin changed from 0 to .5 

   
Figure 12: Dolphin model with value of sink at top of fin changed from 1 to .5 

  
Figure 13: Dolphin model with value of sink at nose changed from 1 to .5 



6. I began most of my work with the simpler dolphin model, but I tested the vector fields 
of several others as well.  The sphere showed some interesting results (figure 14).  The 
sink, when at the Z max, shown on the left, looked like it had a circular barrier in its 
center.  When the min and max Y were used, instead of a singular sink, it seemed to 
break into two. 

 
When using the min and max Z as the source and sink for the donut shape, the 

vector field seems to be smooth.  However, when using X or Y min and max for the 
donut shape, a result similar to the X or Y used for the sphere occurred, as shown in the 
figure 15 (Right).   

 
The elephant, with min and max X values as the source and sink, showed some 

interesting results around its ear.  In figure 16 (Right) along the ear the field seems to be 
coming together as if there were a sink there, but then it pulls upward and around to the 
other side of the head where the sink truly is (Left.) 

     
Figure 14: Sphere model with source and sink at min and max Z 
respectively (Left) and source and sink at min and max Y respectively 
(Right) 

    
Figure 15: Donut model with min and max Z as source and sink (Left) and min and max X as 
source and sink (Right) 



 
Other, more complex models, like the seahorse seemed to flow relatively smoothly from 
source to sink.  The vector field seems well distributed.   

 
The results shown by each of these experiments seem to show well distributed vector 
fields that work well on certain models, such as the dolphin.  Certain oddities occurred, 
such as in certain spots of the sphere and donut shapes, or around the ears of the elephant.  
In future studies we might like to detect why these occur and what affects they might 
have on applications of the vector field on surfaces.   
 

   
Figure 16: Elephant model with min and max X values as source and sink 

     
Figure 17: Seahorse model with min and max Z (Left), Y (Middle), and 
X (Right) as source and sink 
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