
pContainer ARMI Communication Library

Oil well logging simulation

MPIOpenMPPthreads Native

pAlgorithms pContainers

User Application Code

pRange

STAPL Overview

Distributed data structure with parallel
methods.

l Provides a shared-memory view of distributed data.
l Deploys an Efficient Design

l Base classes implement basic functionality.
l New pContainers can be derived from Base classes with

extended and optimized functionality.

l Easy to use defaults provided for basic users;
advanced users have the flexibility to specialize and/or
optimize methods.

l Supports multiple logical views of the data.
l For example, a pMatrix can be accessed using a row based

view or a column based view.
l Views can be used to specify pContainer (re)distribution.
l Common views provided (e.g. row, column, blocked, block

cyclic for pMatrix); users can build specialized views.

l pVector, pList, pHashMap, pGraph, pMatrix provided.

normal misfold

• Provides high
performance, RMI style
communication between
threads in program

• async_rmi, sync_rmi, standard
collective operations (i.e.,
broadcast and reduce).

• Transparent execution
using various lower level
protocols such as MPI and
Pthreads – also, mixed
mode operation.

• Controllable tuning –
message aggregation.

Effect of Aggregation in ARMI

The Standard Template Adaptive Parallel Library (STAPL) is a
framework for parallel C++ code. Its core is a library of ISO
Standard C++ components with interfaces similar to the
(sequential) ISO C++ standard library (STL).

The goals of STAPL are:

• Ease of use
Shared Object Model provides consistent programming

interface, regardless of a actual system memory configuration
(shared or distributed).

• Efficiency
Application building blocks are based on C++ STL constructs

that are extended and automatically tuned for parallel
execution.

• Portability
ARMI runtime system hides machine specific details and

provides an efficient, uniform communication interface.

STAPL: Standard Template Adaptive Parallel Library Applications using STAPL

l Particle Transport Computation
l Efficient Massively Parallel

Implementation of Discrete
Ordinates Particle Transport
Calculation.

l Motion Planning
l Probabilistic Roadmap Methods

for motion planning with
application to protein folding,
intelligent CAD, animation,
robotics, etc.

l Seismic Ray Tracing

l Simulation of propagation of
seismic rays in earth’s crust.

STAPL: An Adaptive, Generic, Parallel C++ Library
Tao Huang, AlinJula, Jack Perdue, Tagarathi Nageswar Rao, Timmie Smith, Yuriy Solodkyy, Gabriel Tanase, Nathan Thomas,

Anna Tikhonova, Olga Tkachyshyn, Nancy M. Amato, Lawrence Rauchwerger
stapl-support@tamu.edu

Parasol Lab, Department of Computer Science, Texas A&M Universit y, http://parasol.tamu.edu/

Prion Protein

A
da

pt
iv

e
F

ra
m

ew
or

k
pRange

l Provides a shared view
of a distributed work
space
l Subranges of the pRange are

executable tasks
l A task consists of a function

object and a description of the
data to which it is applied

l Supports parallel
execution
l Clean expression of

computation as parallel task
graph

l Stores Data Dependence
Graphs used in processing
subranges

Application
data

stored in
pGraph

Thread 1 Thread 2

Subrange 6Subrange 5

Subrange 1

Subrange 3

Functio
n

Thread 1

Thread 2

Subrange 4

Functio
n

Subrange 2

Functio
n

Functio
n

Functio
n

Functio
n

pRange defined on a pGraph across two
threads.

Run-time System
ARMI Communication
Library

Scheduler Executor Performance
Monitor

Thread
3

Thread
2

Thread
1

Thread
0

Th3Th2Th1Th0

Row Based View
Aligned with the distribution

Column Based View
Not aligned with the distribution

Non- partitioned
Shared Memory

View of Data

pContainer

Run-time System and ARMI

Data
Shared
Memory

Data
Distributed

Memory

Partitioned
Shared Memory

View of Data

Data
Distributed
Memory

References
l “A Framework for Adaptive Algorithm Selection in STAPL,” N. Thomas, G. Tanase, O. Tkachyshyn, J.
Perdue, N. Amato, L. Rauchwerger. Symposium on Principles and Practice of Parallel Programming
(PPOPP), June 2005.

l “Parallel Protein Folding with STAPL,” S. Thomas, G. Tanase, L. Dale, J. Moreira, L. Rauchwerger, N.
Amato. Journal of Concurrency and Computation: Practice and Experience, 2005.

l “ARMI: An Adaptive, Platform Independent Communication Library,” S. Saunders, L. Rauchwerger.
Symposium on Principles and Practice of Parallel Programming (PPOPP), June 2003.
l “STAPL: An Adaptive, Generic Parallel C++ Library,” P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G.
Tanase, N. Thomas, N. Amato and L. Rauchwerger. Workshop on Languages and Compilers for Parallel
Computing (LCPC), Aug 2001.
l “SmartApps: An Application Centric Approach to High Performance Computing,” L. Rauchwerger, N.
Amato, J. Torrellas. Workshop on Languages and Compilers for Parallel Computing (LCPC), Aug 2000.

Installation Benchmarks

Architecture &
Environment

Algorithm
Performance

Model

User
Code Parallel Algorithm Choices

Data Characteristics Runtime Tests

Selected Algorithm

Data Repository

STAPL

Adaptive Executable

Model

Adaptive Algorithm Selection Framework

STAPL has a library of multiple
functionally equivalent solutions
for many important problems.
While they produce the same end
result, their performance differs
depending on:

• System architecture
• Number of processing elements
• Memory hierarchy

• Input characteristics
• Data type
• Size of input
• Others (i.e. presortedness for
sort)

Adaptive Sort

Input size 120mil random integers

• Performance Database
• Handle various algorithms/problems with different profiling needs.

• Model Generation / Installation Benchmarking
• Occurs once per platform, during STAPL installation
• Choose parameters that may affect performance (i.e., input size , algo
specific, etc.)
• Run a sample of experiments, insert timings into performance database
• Create a model to predict the “winning” algorithm in each case

• Runtime Algorithm Selection
• Gather parameters
• Query model
• Execute the chosen algorithm

pAlgorithms

• pAlgorithmsare parallel equivalents of algorithms.
• pAlgorithmsare sets of parallel task objects which provide basic
functionality, bound with the pContainerby pRange.
• STAPL provides parallel STL equivalents (copy, find, sort, etc.), as
well as graph and matrix algorithms.

Example algorithm: Nth Element (Selection Problem)
The Nth Element algorithm partially orders a range of elements: it
arranges elements such that the element located in the nth position
is the same as it would be if the entire range of elements had been
sorted. Additionally, none of the elements in the range [nth, last) is
less than any of the elements in the range [first, nth). There is no
guarantee regarding the relative order within the sub-ranges [first,
nth) and [nth, last).

nthfirst last

< n >= n

p_nth_element(pRange&pr, pContainer&pcont,
Iterator nth) {

• Select a sample of s elements.
• Select m evenly spaced elements, called
splitters .
• Sort the splitters and select k final splitters .
• Splitters determine the ranges of virtual
“buckets ”.
• Total the number of elements in each “bucket”.
• Traverse totals to find bucket B containing the
nth element.
• Recursively call p_nth_element(B.pRange(), B,
nth).

}

2

1

1

2

2

1

1

2

1

Bucket

2

1

1

Element Counts Per Subrange

1

0

2

02

31

10

920171813722 12 3 5419 815 1211231014 216 24

17

16

7 9

16 17 207 98

16820

Subrange 0 Subrange 1 Subrange 3Subrange 2 Subrange 5Subrange 4

Subrange 0 Subrange 1 Subrange 3Subrange 2 Subrange 5Subrange 4

Thread 0 Thread 2Thread 1

Element Distribution:
Bucket 0 (e < 8)
Bucket 1 (8 <= e <
17)
Bucket 2 (e >= 17)

Samples:

Sorted Samples:
Final Splitters: 8, 17

9171813722 12 3 5419 815 1211231014 216 24 1620

Our framework automatically
chooses an implementation that
maximizes performance.

Example code (main):

typedefstapl::pArray<int> pcontainerType;
typedefpcontainerType::PRange prangeType;

void stapl_main(intargc, char **argv) {
// Parallel container to be partially sorted:
pcontainerType pcont(nElements);
// Fill the container with values …
// Declare a pRange on your parallel

container:
prangeType pr(pcont);

//parallel function call
p_nth_element(pr, pcont, nth);

// synchronization barrier
stapl::rmi_fence();

}

Example (distribute elements into virtual “buckets”):
template< typename Boundary, class pContainer >
class distribute_elements_wf : public work_function_base<Boundary>
{
pContainer *splitters; nSplitters = splitters- >size();
vector<i n t> bucket_counts(nSplitters);
distribute_elements_wf(pContainer &sp) : splitters(&sp) {}

void operator() (Boundary &subrange_data) {
typenameBoundary::iterator_type first1 = subrange_data.begin ();
while (first1 != subrange_data.end()) {
int dest ;
pContainer::value_type val = *first1;
if (nSplitters > 1) { //If at least two splitters
pContainer::value_type *d = std::upper_bound(&splitters[0], &splitters[nSplitters], val);
dest = (int)(d -(&splitters[0]));

} else {
if (nSplitters == 2){ //one splitter
if(val < splitters[0]) dest = 0; }
else dest = 1;

} else { dest = 0; //No splitter, send to self
}}
bucket_counts[dest]++; ++first1; // Increment counter for the appropriate bucket

}}};

