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STAPL Overview

Distributed data structure with parallel 
methods.

l Provides a shared-memory view of distributed data.
l Deploys an Efficient Design

l Base classes implement basic functionality.
l New pContainers can  be derived from Base classes with 

extended and optimized functionality.

l Easy to use defaults provided for basic users; 
advanced users have the flexibility to specialize and/or 
optimize methods.

l Supports multiple logical views of the data.
l For example, a pMatrix can be accessed using a row based 

view or a column based view. 
l Views can be used to specify pContainer (re)distribution.
l Common views provided (e.g. row, column, blocked, block 

cyclic for pMatrix ); users can build specialized views.

l pVector, pList, pHashMap, pGraph, pMatrix provided.

normal                         misfold

• Provides high 
performance, RMI style 
communication between 
threads in program

• async_rmi, sync_rmi, standard 
collective operations (i.e., 
broadcast and reduce).

• Transparent execution 
using various lower level 
protocols such as MPI and 
Pthreads – also, mixed 
mode operation.

• Controllable tuning –
message aggregation.

Effect of Aggregation in ARMI

The Standard Template Adaptive Parallel Library (STAPL ) is a 
framework for parallel C++ code. Its core is a library of ISO 
Standard C++ components with interfaces similar to the 
(sequential) ISO C++ standard library (STL). 

The goals of STAPL are:

• Ease of use
Shared Object Model provides consistent programming 

interface, regardless of a actual system memory configuration
(shared or distributed).

• Efficiency
Application building blocks are based on C++ STL constructs 

that are extended and automatically tuned for parallel 
execution. 

• Portability
ARMI runtime system hides machine specific details and 

provides an efficient, uniform communication interface. 

STAPL: Standard Template Adaptive Parallel Library Applications using STAPL

l Particle Transport Computation 
l Efficient Massively Parallel 

Implementation of Discrete 
Ordinates Particle Transport 
Calculation.

l Motion Planning
l Probabilistic Roadmap Methods 

for motion planning with 
application to protein folding, 
intelligent CAD,  animation, 
robotics, etc.

l Seismic Ray Tracing

l Simulation of propagation of 
seismic rays in earth’s crust.
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l Provides a shared view 
of a distributed work 
space
l Subranges of the pRange are 

executable tasks
l A task consists of a function 

object and a description of the 
data to which it is applied

l Supports parallel 
execution
l Clean expression of 

computation as parallel task 
graph

l Stores Data Dependence 
Graphs used in processing 
subranges

Application 
data

stored in 
pGraph
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pRange defined on a pGraph across two 
threads.
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Adaptive Algorithm Selection Framework

STAPL has a library of multiple 
functionally equivalent solutions
for many important problems.
While they produce the same end 
result, their performance differs 
depending on:

• System architecture
• Number of processing elements
• Memory hierarchy

• Input characteristics
• Data type
• Size of input
• Others (i.e. presortedness for 
sort)

Adaptive Sort

Input size 120mil random integers

• Performance Database 
• Handle various algorithms/problems with different profiling needs.

• Model Generation / Installation Benchmarking
• Occurs once per platform, during STAPL installation
• Choose parameters that may affect performance (i.e., input size , algo
specific, etc.)
• Run a sample of experiments, insert timings into performance database
• Create a model to predict the “winning” algorithm in each case

• Runtime Algorithm Selection
• Gather parameters
• Query model
• Execute the  chosen algorithm

pAlgorithms

• pAlgorithmsare parallel equivalents of algorithms.
• pAlgorithmsare sets of parallel task objects which provide basic 
functionality, bound with the pContainerby pRange.
• STAPL provides parallel STL equivalents (copy, find, sort, etc.), as 
well as graph and matrix algorithms.

Example algorithm: Nth Element (Selection Problem)
The Nth Element algorithm partially orders a range of elements: it 
arranges elements such that the element located in the nth position 
is the same as it would be if the entire range of elements had been 
sorted. Additionally, none of the elements in the range [nth, last) is 
less than any of the elements in the range [first, nth). There is no 
guarantee regarding the relative order within the sub-ranges [first, 
nth) and [nth, last). 

nthfirst last

< n >= n

p_nth_element(pRange&pr, pContainer&pcont, 
Iterator nth) { 

• Select a sample of s elements.
• Select m evenly spaced elements, called 
splitters .
• Sort the splitters and select k final splitters .
• Splitters determine the ranges of virtual 
“buckets ”.
• Total the number of elements in each “bucket”.
• Traverse totals to find bucket B containing the 
nth element.
• Recursively call p_nth_element(B.pRange(), B, 
nth).

}
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Our framework automatically 
chooses an implementation that 
maximizes performance.

Example code (main):

typedefstapl::pArray<int>  pcontainerType;
typedefpcontainerType::PRange prangeType;

void stapl_main(intargc, char **argv) {
// Parallel container to be partially sorted:
pcontainerType pcont(nElements );
// Fill the container with values …
// Declare a pRange on your parallel 

container:
prangeType pr(pcont);

//parallel function call
p_nth_element(pr, pcont, nth);

// synchronization barrier
stapl::rmi_fence();

}

Example (distribute elements into virtual “buckets”):
template< typename Boundary, class pContainer >
class distribute_elements_wf : public work_function_base<Boundary>
{
pContainer *splitters; nSplitters = splitters- >size();
vector<i n t> bucket_counts(nSplitters );
distribute_elements_wf(pContainer &sp) : splitters(&sp) {}

void operator() (Boundary &subrange_data ) {
typenameBoundary::iterator_type first1 = subrange_data.begin ();
while (first1 != subrange_data.end()) {
int dest ;
pContainer::value_type val = *first1;
if (nSplitters > 1) { //If at least two splitters
pContainer::value_type *d = std::upper_bound(&splitters[0], &splitters[nSplitters], val );
dest = (int)(d -(&splitters[0]));

} else {
if ( nSplitters == 2){ //one splitter
if(val < splitters[0])   dest = 0; }
else   dest = 1;

} else { dest = 0;  //No splitter, send to self
}}
bucket_counts[dest]++; ++first1;  // Increment counter for the appropriate bucket

}}};


