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1 Abstract

This paper presents an algorithm for fairly and efficiently scheduling pro-
cesses in a multi-process system. Current scheduling algorithms sacrifice
either efficiency or fairness when the process load begins to exceed available
memory: either the CPU sits idle while processes bring their pages in and
out, or the processes run one at a time until finishing, which allows for full
CPU utilization but means that the latter processes must wait a long time
before beginning to run, and any idea of fair shares cannot be accommo-
dated. We improve upon both of these algorithms by using RIRO (roll-in,
roll-out): a process runs for its turn, then moves its entire working set out of
memory while other processes run; then, when its turn arrives again, it moves
its working set back in. By using algorithms based on RIRO, we are able to
ensure that every process receives its fair share over small windows of time,
while maintaining full CPU utilization. We have developed four RIRO-based
schedulers, and here present them along with results from their simulations.

2 Background and Motivation

Groups of processes often run simultaneously, both on individual levels (for
example, a user running Firefox, Outlook, and Emacs on her laptop) and
on group levels (a university network handling simulations from both the
physics and chemistry departments). The system must then work out some
way of dividing its resources among the processes. Often the system must
also take into account processes’ shares: values assigned by the user to each



process, demanding that Process 1, for example, gets 25% of available CPU
time, Process 2 gets 15%, and so on.

Most current solutions to this problem work by running the processes
virtually simultaneously, passing out four CPU quanta to Process 1, then
three to Process 2, and so on through the processes until cycling back to
Process 1. This works well when all processes fit comfortably within available
memory: all CPU time is used efficiently, and all processes receive precisely
their fair share. The problem arises when the processes begin to grow too
large to fit within the system’s memory. If it is Process 2’s turn to receive
CPU quanta, but Process 2 does not have the necessary pages available to
it, the system has only two options: either suspend the CPU while Process
2 swaps its pages into memory, or skip over Process 2 and move on to the
next process. One choice sacrifices efficiency, the other sacrifices fairness. It
is our goal to find a solution which sacrifices neither.

To deal with processes’ pages, we use the concept of the working set. As
defined by P. J. Denning in “The working set model for program behavior”,
a process’s working set represents some subset of its pages, such that if those
pages are available to it in memory, the process can run below the desired
threshhold of paging. The working set can thus be used as a kind of footprint
for a process.

Problems arise in traditional scheduling algorithms when available mem-
ory is too small to contain all of the processes’ working sets. Our solution
is to Roll In, Roll Out (RIRO): rather than keeping only fragments of every
process’s working set in memory, and so creating paging, we keep some of
the processes’ entire working sets in memory, and others’ entire working sets
out of memory. Then the active processes, those with their working sets in
memory, can run efficiently with minimal paging; and when, according to our
scheduling algorithms, an active process’s turn is up, it rolls out: removes its
entire working set from memory. Then a process that had been inactive rolls
in: moves its entire working set into memory, in the space that the previous
process cleared. This new process can now begin to run. While processes roll
in and out, the other active processes continue to run, so the CPU efficiency
never drops.

The trick, then, is to schedule the rolling in and out so that every pro-
cess receives its fair share of CPU quanta. We experimented with several
scheduling algorithms to achieve this; they are detailed in the next section.
Each has its ups and downs, but the best of them, the Two Heap Scheduler,
balances swift runtime with fairness sufficiently that we plan to implement



it.

Overview

In Chapter 3, we describe the two kinds of scheduling algorithm and list the
four algorithms we have created, including both an overview of each and an
explanation of the algorithms themselves.

In Chapter 4, we detail the methods used to test the algorithms’ per-
formance. We describe the Java simulator that runs the algorithms, and
explain the evolution and uses of the three kinds of plots that are the simu-
lator’s eventual output.

In Chapter 5, we show the resulting plots from a representative group of
processes, and point out these plots’ significant details.

In Chapter 6, we explain the conclusions drawn from the simulators’
results, and the probable future of this research.

3 Scheduling Algorithms

Our scheduling algorithms fall into two main categories: Pre-computed sched-
ulers, which take a set of processes, calculate the shortest possible fair sched-
ule for those processes, and then run the schedule over and over until the
processes have finished their jobs; and heuristic schedulers, which take a set
of processes and run them on-the-fly, deciding which process to run next
in real time. Pre-computed schedulers guarantee complete fairness, which
heuristic schedulers cannot do; but pre-computing a schedule for more than
three or four processes takes too much time to be practical (we suspect, in
fact, that the problem is NP-complete). So our pre-computed schedulers
were created not in the hope that they could ever be used on a real system,
but only as a way to gauge the performance of our heuristic schedulers.

We created two scheduling algorithms of each type. The Simple Linear
scheduler (SL) and the Start-End scheduler (SE) are pre-computed, and the
In Order scheduler (I0) and the Two Heap scheduler (TH) are heuristic.
Their algorithms follow.



Simple Linear Scheduler

A simple linear scheduler runs each process one by one, rolling out the pre-
vious process while the next one runs and rolling in the next process while
the previous one runs.

Algorithm
e Make a table of process IDs P, shares S, and working sets W'S.

e Make a list of all possible permutations of processes.

e Eliminate all permutations that are the cycled replication of another
permutation.

e Determine each permutation’s total runtime:

— Each P;’s individual runtime RT; must be > WS, 1+ WS4 (i.e.,
each process must run long enough to roll out the previous process
and roll in the next)

— Make a table of each P;’s minimum RT, S, and RT/S
— Calculate the permutation’s share length A:

* Find the P; with the largest RT;/S;

* A= [RT;/Si]

— The permutation’s total runtime is A x Y S;
e Choose the permutation with the lowest total runtime.

e Let each P, run for time A *.S; in the order given by the chosen permu-
tation. Roll out P,_; and roll in P;;; as P; runs.

Start-End Scheduler

A start-end schedule resembles a simple linear scheduler in that it lists all
possible schedules, then chooses the one with the lowest runtime; but rather
than using permutations of processes to create its schedules, it uses permu-
tations of start events s; and end events e; to create its schedules.



Algorithm
Choosing a permutation

e List all permutations of s;’s and e;’s, including one s and one e for each
process.

e Eliminate all permutations where:

— At any time, the sum of WS’s of active processes won’t fit in
memory

— Any e; comes before its matching s;
e Find the share length A for each remaining permutation

e Choose the permutation with the smallest A

Finding the share length

o Let A= [WL where RI and RO are the process’s roll-in and
roll-out times

e Try creating a schedule using this A

e If the attempt fails, double A and try again

e Ifthe attempt succeeds, do a binary search between the last two checked
A’s to find the smallest successful A

Creating the schedule

e Find the set of always-active processes. Mark them as always-active,
and put them on the active list. Always-active processes do not need
to be rolled in and out.

e Devote all resources, both memory and CPU, to reaching the next s or
e as quickly as possible.
To reach s;: P; must be completely rolled in

To reach e;: P; must have received S; * A CPU quanta, and P; must
be completely rolled out



e If at any time the CPU is not busy with the previous step, choose the
P; on the active list with the soonest e;, and let it run.

e Once a P; has received S; *x A CPU quanta, take it off the active list.

o If at any point the CPU is left idle and there is nothing on the active
list that can run, the schedule has failed for the given A.

Finding the always-active processes

e All P;’s such that s; is before all e’s and e; is after all s’s are always-
active.

In Order Scheduler

An in-order scheduler is a simple, naive algorithm that runs the processes in
order of their ID numbers. Each process is run for the length of time given
by its share; so if three processes have shares of 2, 8, and 50, they will run
for 2, 8, and 50 units of time. If possible, the scheduler rolls out the previous
process and rolls in the next one while the current process is running; but if
there is not sufficient time to do that, the scheduler simply lets the CPU sit
idle while it rolls processes in and out.

The performance of an in-order scheduler, as might be expected, is far
from optimal. It was written because we needed a quick, simple, easy-to-
understand heuristic to get an early look at how heuristic performance com-
pared to pre-computed performance.

Two Heap Scheduler

A two heap scheduler is a more intelligent heuristic algorithm that keeps
two heaps, or priority queues, of processes: an active heap (processes that
are rolled in and receiving quanta) and a passive heap (processes that are
rolled out). The heaps are ordered by excess or deficit of quanta; the top
process of the active heap is the process that has received the most quanta
proportional to its desired share, and the top process of the passive heap is
the process that has received the fewest. The top processes of the two heaps
are continuously swapped as the active processes run.



Algorithm

e Roll in as many processes as will fit within available memory, and add
these processes to the active heap. Add all other processes to the
passive heap.

e Repeat until all processes have finished running:

— Take a new process from the top of the passive heap.
— Repeat until the new process will fit within available memory:

x Take an old process from the top of the active heap.

x If the old process’s excess is less than the new process’s, give
out quanta until the old process’s excess is greater.

x Roll out the old process and move it to the passive heap.
— Roll in the new process and move it to the active heap.

— If any other passive processes will fit within available memory, roll
them in and move them to the active heap.

Notes

e Throughout the run, the CPU continuously distributes quanta to all
active processes.

e (Quanta are given out among the active processes proportionally to their
goal shares.

e A process P’s excess

CPU quanta P has received P’s goal share

~ CPU quanta given to all processes so far/ZAll goal shares

e Since the active processes’ excesses are constantly changing, the active
heap must be resorted before a process is taken from it. To cut overhead
time, the active heap may only be resorted every k times a process is
withdrawn, where £ is proportional to the number of processes. This
will slightly reduce performance.



4 Methods

A Java simulator, Grapher.java, incorporates the four scheduling algorithms.
The simulator accepts a file encoding a set of processes, then runs each of
the four algorithms on the processes one by one, creating schedules and sim-
ulating the processes’ scheduled roll-ins, roll-outs, and runs. The simulator
then outputs a data file tracking each process’s performance through the run.
These data files were used to generate three different kinds of plots:

CPU Plots These simply plot how many CPU quanta each process has re-
ceived over time. They are useful for determining the order in which the
processes run, and getting a general feel for how a scheduler behaves.

Share Plots These plot what share of CPU quanta each process has re-
ceived over time, with horizontal dotted lines representing what each
process’s goal share is. They are useful for determining a scheduler’s
overall fairness, and observing how closely each process conforms to the
share the user has given it.

The share plots went through several evolutions during the project.
Each process’s share over time was first calculated by dividing the
quanta that process had received by the total quanta the CPU had
given out; this gave an accurate picture of a process’s share over the
lifetime of the run, but was useless for determining how fair the shares
were over small windows of time. The share plots were then updated to
calculate shares based on a sliding window: each process’s share over
time was calculated by dividing the quanta that process had received
in the past few cycles over the total quanta given out in those cycles.
This gave a more accurate picture of short-term fairness, but the run-
time of calculating a new window of time at each step was prohibitive.
In their final evolution, the share plots used exponential averaging to
calculate each process’s share; this method combined a quick runtime
and an accurate look at fairness, and is used in the plots below.

Integral Plots These plot the distance between each process’s actual share
and its goal share over time, and include a label listing the sum area
under all integral curves. This value can be used as a measure of a
schedule’s overall fairness, and is useful for comparing the fairness of
several schedules.



5 Results

Many sets of processes were run through the simulator, and their plots ex-
amined. Share plots, as we expected, tend to oscillate around each process’s
goal share; as the process runs, its actual share grows until it exceeds its
goal; then its turn finishes, it sits idle, and its actual share drops to below
its goal. This oscillation means that no one process is ever too far from its
goal share; and having all processes remain as close as possible to their goal,
combined with a short runtime, is the mark of a good schedule.

Here is one representative set of processes and the plots it generated. The
set’s notable features are that it contains four processes and that two of its

processes’ working sets are much larger than the other two; so it is referred
to as 4bigWS.
Process Set for 4bigWs

Process ID | Share | Working Set | Runtime
0 2 60 100
1 4 30 100
2 8 2 100
3 3 1 100

Simple Linear plots

The Simple Linear plots proceed in a straightforward way: each process
receives the amount of CPU quanta determined by the schedule, over and
over, until all processes have finished running. This produces a short total
runtime and a window of fairness equal to the schedule length: within every
272 CPU quanta, each process is guaranteed to receive its fair share.
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Integrals of Shares among "4bigHS" Processes using Simple Linear Scheduling
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Start-End plots

The Start-End plot in this case has a much longer runtime than the Sim-
ple Linear plot, which at first glance makes little sense: if the Start-End
algorithm can do everything the Simple Linear algorithm can to create the
shortest possible schedule, with the addition of allowing processes’ runtimes
to overlap, why would the Start-End schedule take longer to run? The an-
swer can be found in the high idle time. We have thus far found no way to
make the Start-End algorithm strictly cyclic; it requires, at the beginning
and end of each cycle, extra time to roll processes in and out. For some
groups of processes, this time is insignificant, and the Start-End algorithm’s
shorter schedule lengths prevail; but in this case the idle time far outweighs
the shorter schedule length. The Start-End algorithm does, however, have a
smaller window of fairness than the Simple Linear algorithm.
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Integrals of Shares among "4bigH3" Processes using Start-End Scheduling
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In Order plots

These plots demonstrate just how ludicrous the In Order algorithm’s behavior
can be. Because it allows the CPU to sit idle whenever it needs extra time
to roll a process in or out, it racks up vast amounts of extra time, nearly
stretching its runtime by a factor of ten. It does, however, have the smallest
possible window of fairness, since each process runs only for the length of its
share; in fact, if the working set sizes are very small compared to the shares,
or if there is enough room in memory for almost all of the working sets, the
In Order algorithm’s behavior can be the best of all the four algorithms. Its
obvious shortcomings, though, mean that it would be a poor choice for actual
implementation.
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Integrals of Shares among "4bigH3" Processes using In Order Scheduling
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Two Heap plots

The Two Heap algorithm produces the only truly non-schedule-based plots:
depending on the processes’ attributes, they may run in any order at any
time. This on-the-fly computation means that the Two Heap algorithm
would be more practical for actual implementation than either of the two
pre-computed algorithms; and since its behavior approaches the level of the
Simple Linear algorithm for fairness (its total integral is only slightly higher)
and efficiency (its idle time is not excessive), we believe it is a good choice
to use for scheduling processes on a real system.

In the share plot, notice the jagged curves of processes 2 and 3, compared
to the smooth lines of 0 and 1. These are a result of the difference in working
set size among the processes. 0 and 1 have large working sets, and tend to
sit in either the active or passive heap for long stretches; 2 and 3, with their
tiny working sets, flit rapidly from heap to heap, picking up a few quanta
here, a few there. This freedom to change behavior based on working-set size
is unique to the Two Heap scheduler.
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Integrals of Shares among "4bigHs" Processes using Two Heap Scheduling
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6 Conclusions

As seen in the results, each of the four algorithms has its strengths and
weaknesses. The simple linear scheduler produces the best plots of the four,
combining a low total integral with a short runtime, but if it were imple-
mented in an actual system, the cost of calculating a new schedule every
time a process is added or changed would completely outweigh its benefits.
The start-end scheduler suffers from the same problem, and thus would be
useless for a real system; but if a solution could be found to the problem of
making it truly cyclic, it would be the best of the pre-computed schedulers,
and useful for judging the performance of the others.

The heuristic schedulers have no lengthy schedule-calculation time; their
calculation takes place in small sections throughout the run, and so they could
be used on a system without slowing it too grievously. The in order scheduler,
however, would be a very poor choice; its immense idle time means that while
it is very fair, its efficiency is almost as bad as using no scheduler at all; in
some cases, it may even be worse. The two heap scheduler alone combines
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good fairness, short runtimes, and small calculation overhead. If a system
running multiple processes suffers from memory shortage causing excessive
paging, using the two heap scheduler to manage its processes would result
in higher CPU utilization while maintaining the balance of shares desired by
the user.

We next plan to create an actual implementation of the two heap sched-
uler and test it on real processes. Some aspects of a real system (changing
working set sizes, for one) will need to be accounted for in the move from
simulator to implementation; but the two heap algorithm, not being schedule-
based, has the advantage of allowing processes to join in, drop out, or change
midway through the run without suffering much loss of performance, and so
we believe it will be up to the challenge. The algorithm also thrives under
high-stress conditions: when a system has an excess of processes for its avail-
able memory, the two heap scheduler performs better because it always has
processes of the right size available to swap from heap to heap.
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