

Exploration of End User Debugging in Web

Application Development

Libby Johnson and Mary Beth Rosson, PhD

Pennsylvania State University

State College, Pennsylvania

August 2005

 1

Introduction
 Picture an owner of a bed and breakfast empowered with tools he can use to develop an

interactive web site. He builds a site to advertise his bed and breakfast and allow guests to make

reservations online. Picture yourself planning a nice vacation, visiting his site, and making

reservations at the bed and breakfast. What if the calendar and reservation system is faulty?

You might arrive at the bed and breakfast to discover you have an invalid reservation and there

are no rooms available. What if the website is insecure? The credit card information you use to

make your reservation can be accessed by others. Your financial information is vulnerable and

your failed reservations hinder your vacation. The bed and breakfast owner is faced with an

angry customer, has lost income from that customer, has a diminished business reputation, and

may be liable for damage caused by credit card information stolen from his insecure site.

Research indicates that end users not trained in programming can create basic web

applications if they are supplied with a high level development tool.[1, 2] Commercial tools

such as Filemaker Pro, Microsoft FrontPage, and Macromedia Dreamweaver already enable end

users to create web applications. However, Editor in Chief of “IEEE Software” Warren Harrison

wonders about the viability of programming by end users because they have no formal training,

 “Can it be true that software manipulating my credit history could have

been written by an accountant with no concept of software testing or development

processes? How many e-businesses have failed because of lost orders or payments

placed through a Web site written by a self-taught Perl or HTML “programmer”

who is really a marketing assistant and has never heard of file locking?”[3]

The bed and breakfast scenario demonstrates small scale economic consequences for a

business and client. However, the diversity of web applications and the power to reach large

audiences across national borders bespeaks potential for far reaching consequences. Since end

users are being empowered to create web applications, they must also be given the means to

insure the quality of those applications. In addition to improved web application development

tools, debugging methods and tools appropriate for end user programmers must be provided.

To support end user debugging activities, we must first understand end user debugging

needs. This paper describes a “think aloud” study that explores the end user mental model of

debugging web applications. By understanding end users’ mental model of debugging, more

effective tools and methodologies supporting web application debugging can be built.

Related Work
 Research shows that debugging techniques and tools can be made considerably easier and

more “natural”, to the point that they can be successfully applied by end user programmers.

“End-user Software Engineering” and “Natural Programming” are two areas of primary focus for

research in improving debugging for end users.

 Margaret Burnett, Curtis Cook, Gregg Rothermel, and others at Oregon State University

hope to bring software engineering practices to end users without requiring them to adopt a

professional programmer’s mindset. They have termed the concept “End-user Software

Engineering.” Their research has successfully combined an interactive testing methodology,

fault localization capabilities, interactive assertions, and motivational devices to help end users

ensure correctness in their software.[4]

 2

 Burnett et al. designed a “What You See Is What You Test” (WYSIWYT) testing

methodology to interactively communicate testing information to end users as they develop

spreadsheets. Colored borders are used to indicate the degree to which a cell has been tested and

a display indicates the percentage of the spreadsheet that has been tested. This visual feedback

responds to changes the user makes, allowing the testing process to be integrated into the

incremental development of the spreadsheet.[4, 5, 6, 7]

 Once failures have been identified with the WYSIWYT methodology, visual fault

localization techniques are used to help users locate the source of failure. To indicate likely

faultiness, the interior of cells is tinted red – the darker the tint the more likely the cell contains a

fault. The tinted cells reduce the search space needed for tracing dependencies from the failing

cell to contributing cells.[7]

 Visual feedback and motivational devices have been shown to encourage spreadsheet

programmers to adopt good software engineering practices by using testing and debugging tools

they are being supplied. For example in one study, users could place X marks in spreadsheet

cells as a debugging tool to indicate they noticed a failure. The X marks were used to generate

fault localization feedback by tinting cells red according to fault likelihood. The study found that

a majority of users perceived benefit from placing the X marks and went on to place more X

marks. Additionally, fault localization feedback was shown to cause users to abandon ad hoc

searching when debugging and adopt a more successful dataflow strategy.[7] Finally, assertions

were added to the arsenal of spreadsheet tools developed so far. A surprise-reward-explain

strategy enabled and motivated end users to incorporate assertions into their spreadsheet

programs without prior knowledge or even an explanation of the use of assertions.[6]

 While end user software engineering works to bring software engineering practices to

nonprofessional programmers, a second area of study intends to make programming processes

more “natural”. For Myers, Pane, and Ko, making programming more “natural” means aligning

the process more closely with how a non programmer would approach it. They propose that

programming tools and environments should be natural because programming is the process of

translating a human idea into terms a computer can understand. Naturally, the closer the

language and environment of the computer is to the original idea; the easier it is to translate.[8]

 As part of the “Natural Programming” effort, Andrew Ko and Brad Myers have worked

on methods for making debugging activities more natural for programmers. They conducted

studies that found that programmers tend to ask why did and why didn’t questions when

debugging. Studies also found that incorrect hypothesis about causes of failure inhibit a

programmer’s ability to successfully debug a program. For example in an event based language

called Alice, 50% of errors were caused by false assumptions made by programmers as they

were debugging existing errors.[9] The study findings lead Ko and Myers to develop a new

debugging paradigm called Interrogative Debugging. The goal of Interrogative Debugging is to

allow programmers to ask questions about program behavior thereby supporting the

hypothesizing activities of debugging. The Whyline debugging interface successfully

implements Interrogative Debugging and allows programmers to test their assumptions by asking

why did or why didn’t questions about their program’s behavior. Answers about a program’s

behavior based on run time data prevent a programmer from spending time debugging based on a

false assumption and possibly introducing more errors.

 Whyline illustrates the success of Natural Programming methods of debugging. Ko and

Myers found that Whyline made debugging almost 8 times faster. The decrease in debugging

time allowed programmers to complete 40% more tasks than programmers not using Whyline.[9]

 3

 The research just discussed demonstrates the potential for end user debugging in the

dataflow paradigm of spreadsheets and the event based language (Alice) that Whyline was

applied to. Brown et. al demonstrates that the same ideas used for spreadsheets can be

generalized to visual programming languages as well[10]. However, can debugging

methodologies be developed to reduce the complexities of web application debugging to a level

appropriate for end users?

 Rode, Howarth, Pérez-Quiñones, and Rosson explored the current state of web

application debugging by analyzing commercial web development tools marketed to end users.

The tools use three methods to help end users address errors. The first method is to help users

avoid errors by providing a constrained set of options and preventing direct access to underlying

implementation. In the second method, the tool helps identify errors and provides error

messages. However, tools with external application servers - such as Microsoft FrontPage and

Macromedia Dreamweaver - are limited in detecting errors because their code execution depends

heavily on server configuration. Method three of addressing errors provides a built in debugger

to step through code execution. Unfortunately, debuggers may be difficult for end users to

understand because they require knowledge of how code executes.[11]

The three methods described for end user debugging of web applications present

opportunities for improvement. None of the methods provide the interactive, visual means for

identifying failures and locating faults that have proven helpful for debugging spreadsheets,

event based languages, and visual programming languages. Before researchers try to apply these

debugging techniques to web applications, it is important to determine if they are appropriate.

To this end, our study will examine the needs end users have in debugging web applications.

Study
 To investigate end user debugging approaches for web applications we conducted a

“think-aloud” study with 6 end users. The end users were asked to enhance a website, in which

bugs were planted, using Microsoft FrontPage. FrontPage was chosen because it is a popular

web application tool marketed to end users.

Procedure
 Sessions were conducted one-on-one between an examiner and a subject. The subject

was given a scenario in which he was hired to maintain a web site. The scenario gave four

enhancement tasks and asked the subject to fix any bugs in the site and make any changes that

would increase the site’s usability. The subject was given time to read the scenario and ask any

questions. The subject was asked to vocalize his thought process as he worked. A session was

started with two windows open. One window contained the browser Internet Explorer for

viewing the site. The other window contained the live site opened in FrontPage so that users

could make changes directly instead of having to publish to the server. Data was obtained

through screen and audio recordings, the examiner’s observations, and a post session

questionnaire.

Web site
 The web site used for the study was modeled after a web site for a slide library at a

university art department. The model was chosen as being representative of a web site that an

end user without programming experience would be likely to create or maintain using Microsoft

FrontPage. The web site home page provides an introduction to the slide library and a menu of

 4

links to a page explaining library services, a database of the library’s slide collection, faculty

pages, and a page of contact information. Figures 1 and 2 illustrate the website.

Figure 1. Architecture of the web site used in the FrontPage Study. Wold_userX is the site folder.

FacultyPages and SearchSlides are sub folders. Edges in the graph represent links. Nodes are the names of web

pages.

Figure 2 (A –C). Screen shots of web site. 2-A. Index.htm

 5

2-B. services_policies.htm 2-C. results_page.asp

Bugs
 To explore user’s debugging approaches 9 faults were inserted into the site. Informal

research using the web and FrontPage discussion groups helped target simulations of realistic

faults in a variety of common areas – syntax, navigation, usability, dynamic form function.

Having a variety of faults provides a more realistic situation as well as opportunity to see how

users respond to different faults. Table 1 summarizes faults used in the study.

Faults Planted in FrontPage study Web Site

No. Type of Fault Description Category

1 Incorrect link Link to faculty pages incorrect.
Static, functional,

navigation

2
Image does not

display

Image on services_policies.htm

won’t display.

Static, functional, syntax

(image name misspelled)

3
Form-database

interaction

Slide collection search does not

work correctly.

Dynamic, functional,

runtime

4 Poor use of color

Sevices_policies.htm is hard to

read because background is too

dark.

Static, usability, design

5 Html shows
Html shows on

services_policies.htm.
Static, functional, syntax

6 Poor form design
Browse field of file upload form

too small.
Static, usability, design

7 Shortest Path
Unnecessary page in path to

services_policies.htm.
Static, usability, design

8 Html shows
Html shows on

localContactInfo.htm.
Static, functional, syntax

9
Form

function
File Upload Form does not work

Dynamic, functional,

runtime

 Table 1.

 6

A good illustration of inserted faults appears on the site’s “Services & Policies” page (figure 3).

The page is too dark – a usability error. An image is not displaying and html code shows on the

page – syntax errors. The form field at the bottom of the page is too short (another usability

issue) and, least obvious, the form does not function.

 Figure 3. Example of planted faults.

Tasks
 End users are likely to debug in the process of accomplishing other tasks. A traditional

debugging study approach, requesting subjects to debug a web site, would not realistically

capture end user debugging practices. Additionally, we hope to gain insight into how end users

divide their time between accomplishing a task and debugging. Therefore, subjects were given

four enhancement tasks and asked to fix any bugs in the site.

 The four tasks were modeled after requests an employer might make for web site

enhancements. The first task asked subjects to insert a link which allows site browsers to

download a word document. The second task instructs participants to create an image map with

a provided image. The third task requests that a new database be created for the library’s video

collection. The fourth task asks that a new field for searching by title be added to the form used

for searching the library’s database of slides.

Participants
 We recruited from the general public with a flier and an email to a community FrontPage

listserv. We also recruited from our local university population of professionals and students

through listservs. Response to our recruiting efforts came from the university population and

yielded 6 individuals relatively diverse in age, education, and experience. Three participants

were students working on their bachelor’s degree. One was a student who just finished a second

master’s degree. Two participants were professionals; one with a bachelor’s and the other with

an associate’s degree. Ages of participants ranged from 21 to 42. Web development experience

varied from students with only coursework to professionals who created web pages as part of

their occupation. See table 2 for a summary of participants’ profiles.

 7

 Profiles of FrontPage Study Participants

User
Student/

Professional
Gender Age Education Experience

1 Student F 35 2nd Master
Self taught. Created websites for self, political campaign,

2 student organizations. Course in web design for teachers.

2 Professional M 42 Bachelor
Maintained web pages as a lab manager. Web course

offered by Penn. State University.

3 Student M 21 high school
Work as student instructor tutoring people in FrontPage.

Internship experience with FrontPage.

4 Student F 22 high school

Self taught. Posted pictures in hand-coded html. Then took

technology in the classroom, visual design on the web, &

PGSIT 2000 course. Created websites for coursework.

5 Student F 22 high school Maintain websites for student clubs. Web art design course.

6 Professional F 36 Associate

Creates basic web pages for finance department. Courses

in Access, Excel, Word, Dreamweaver, FrontPage,

PowerPoint, Computer Presentations, PageMaker.

Table 2.

Results

Site & Scenario
 Most users in the study considered the site and scenario representative of what they might

work on. The average user ranking of how realistic the site and scenario were is 5.00 on a scale

of 1 to 7 with a standard deviation of 1.26. The one user who gave the site a below average

rating did so because she felt that, “no art website would ever be black and white.”

Site & scenario is realistic. Rated on a scale of 1-7

User 1 User 2 User 3 User 4 User 5 User 6 Average Standard Deviation

3 5 6 6 6 4 5.00 1.26

Table 3.

Tasks
 The tasks were designed to start easy, increase in difficulty, and provide enough

challenge to our user group. Rankings from the post session questionnaire (table 4) and user

success rates for each task (table 5) indicate the study was appropriately designed in this regard.

Subjects ranked task 1 as easiest and 5 out of 6 users completed it. Task two follows in rank and

4 out of 6 users completed it. Two users (3 and 5) that completed task 4 ranked it slightly less

difficult than task 3. However, neither user completed the task correctly. Since neither user

tested their implementation, they may have been unaware that they had not completed the task

correctly. User 5 completed part of task 3 correctly, which seems to indicate that task 3 was

easier for her despite her ranking it more difficult than task 4. User 6, who completed both task

3 and task 4 successfully, ranked task 3 as easier than task 4. Three out of six users did not get a

chance to complete task 4 because they ran out of time.

 8

Table 4.

Table 5. * The user generated a correct database interface but did not realize it was correct. He made another

database interface that was not correct.

The primary goal of structuring the experiment around tasks is to see how end users deal

with debugging as a part of web site development or maintenance. Questions we are

investigating are:

Q1: For end users, does debugging hold greater, lesser, or equal significance compared

to accomplishing a web development task?

Q2: How do end users divide their time between web development and debugging?

To answer these questions we combined responses from the end of session questionnaire with a

breakdown of debugging activity by task for each user.

Results showed that the 6 users were evenly dispersed across the three possibilities of Q1

(greater, lesser, or equal) for debugging verses development. Users 1 and 4 placed greater

emphasis on debugging. When asked how she divided her time between the assigned tasks and

debugging, User 1 responds, “Started out w/ doing my own fixing – realized I should get to what

I was supposed to do.” User 4 states, “More time was spent on fixing bugs, because I would

rather have a working, simple page than an enhanced, but still messed-up buggy page.”

Additionally, user 1 spent 8 minutes debugging and fixed 3 out of the 4 planted bugs she fixed

before starting task 1. User 4 spent 28 minutes debugging and fixed all 6 of the planted bugs she

fixed before starting the tasks. Users 2 and 3 place equal emphasis on debugging and their

assigned development tasks, interleaving the two activities. User 2 says of his method, “I would

correct errors as I found them while doing assigned task.” User 3 states, “[I] Looked for major

Rating of Tasks on a scale of 1-7

Task User 1 User 2 User 3 User 4 User 5 User 6 Average Standard Deviation

1 2 3 1 2 1 3 2.00 0.89

2 2 4 4 5 2 3 3.33 1.21

3 7 6 7 6 6 3 5.83 1.47

4 NA NA 6 NA 5 4 5.00 1.00

Success Rate of Tasks

S = successfully completed

N = not successfully completed

Task Description User 1 User 2 User 3 User 4 User 5 User 6

1

Insert a link to

download a Word

document

S S N S
S – location

inappropriate
S

2
Create an image map

with 3 links
N S N – skipped S S S

3

Create a database at

a specified location

& link it to the home

page

Database – S

Location – S

Link – N

Database – S

Location – N

Link – Out

of time

Database – N *

Location – N

Link - N

Database – S

Location – N

Link – Out

of time

Database – S

Location – N

Link – N

Database – S

Location – N

Link – N

4

Add a search field to

a database search

form.

Skipped.

Out of time
Out of time Skipped. N Out of time N S

 9

bugs like noticeable extra text or incorrect links while performing the tasks.” After a one minute

exploration of the site, user 2 went to task one. Bugs were noticed in the site exploration but not

fixed until after the user began working on task 1. Bugs were fixed as they were encountered in

the tasks. User 3 started immediately with the tasks. Like user 2, user 3 fixed bugs as he

encountered them. Users 5 and 6 placed greater importance on completing their tasks than on

debugging. When asked how they divided their time between debugging and enhancing the

website, both users discuss how they approached the tasks but fail to mention debugging. User 5

completed the list of tasks without noticing or fixing any of the planted bugs. Since there was

time, the experimenter prompted her to debug and she then noticed four and fixed three planted

bugs. User 6 noticed 4 bugs but fixed only 2, the fewest of all users. However, she was the only

user to complete all 4 tasks correctly, demonstrating the tradeoff between completing the tasks

and taking time to debug in the time constraint given.

Studying end users’ division of focus between web development and debugging indicates

how aware end users are about ensuring correctness in conjunction with web development. This

study shows that end users can be quite diverse in how they divide their time between web

development and debugging activities.

Participants
 The skill set of the user group was slightly less sophisticated than we were originally

anticipating for the study. For example, we expected these web developers to be familiar with

creating image maps. However, 4 out of the 6 users did not know how to create an image map.

Additionally, we discovered that the university population did not use dynamic features of

FrontPage because the university deemed it a security risk to install the required server

extensions. Therefore, participants were challenged beyond their current skill levels with tasks 3

and 4, which use features requiring FrontPage server extensions. Despite having no prior

knowledge of FrontPage database features, 5 out of 6 users were able to successfully generate a

database for task 3 (although the location and link to it tended to be incorrect) and one user, user

6, successfully completed task 4. Although 3 out of 4 users reported some experience with

Microsoft Access, user 6 was the only one who reported near expert use of it (4 on a scale of 0-

5). User 6’s Access experience is likely a factor in her successful completion of tasks 3 and 4

which involve databases.

Noticing and Fixing of Planted Faults
 From the order and frequency in which planted faults were noticed and fixed we can

make observations about what types of faults users found and fixed easily and what type of faults

presented considerable challenge. These observations can guide us in supporting end users’

debugging efforts. Study participants found syntax errors the easiest faults to find and fix (aqua,

table 6). The most noticed bug was an image that was not displaying due to a misspelling of the

image name in html. The bug was noticed quickly (1
st
, 2

nd
, or 3

rd
 of 9 bugs) and was the only

bug noticed by all 6 users. The next most frequently noticed and fixed faults where syntax errors

causing html to show on web pages and poor use of color, a usability bug that makes web sites

difficult to read. Four out of six users noticed and fixed these faults. Study participants were

fairly adept at finding these visually obvious errors. Fewer participants discovered and corrected

two navigational errors planted in the site (purple, table 6). Four out of six users noticed the

extraneous page, a usability issue, inserted in a link between the home page and another page and

three of them fixed it. Likewise four users noticed the incorrect link and three fixed it. Since

 10

only half of users fixed the navigation errors, support for verifying the navigational structure of a

web site may prove beneficial. Faults related to forms were the most difficult for users to notice

and fix (grey, table 6). Only one user noticed and adjusted a too short form field that hindered

the usability of a file upload form. Likewise, only one user discovered that the file upload form

did not function, although she did not attempt to fix it. Three participants viewed the site in a

browser and discovered a bright yellow message indicating a database error. The error message

successfully drew their attention to the fault. However, users were required to “test” their site in

a browser before the message was displayed. In addition the error message simply stated there

was a problem and gave no clue as to the cause. In this situation, fault localization assistance

would be advantageous. Two participants never viewed the site in a browser and therefore did

not notice the error. One participant did not view the site in a browser but found the error in a

properties box while working on task 4. Only the user who found the error in the properties box

was able to fix it because the properties box is where the correction needed to be made.

Number of users that noticed and fixed bug (out of 6)

No.
Type of bug Number of users that

noticed the bug

Number of users that

fixed the bug

1 Incorrect link 4 3

2
Image does not

display

6 4

3
Form-database

interaction

4 1

4 Poor use of color 4 4

5 Html shows 4 4

6 Poor form design 1 1

7 Shortest Path 4 3

8 Html shows 4 4

9 Form function 1 0

 Table 6.

Debugging Approaches
 Study participants employed a variety of approaches to debugging (table 7). All users but

one viewed the underlying html of their project when trying to locate and fix errors. Even

though end users are given a high level web development tool and although they are not trained

programmers, they still understand and make use of the underlying html code. Visual cues such

as colored syntax highlighting proved helpful to users 2 and 3. While fixing bugs, users 2 and 3

introduced their own syntax errors. However, both realized it immediately when the color of the

syntax highlighting changed and they were able to correct the errors. It was rather disappointing

to see that all users did not test the site in a browser, especially since they were provided with an

open browser window at the start of the study. However, the users who did not view the site in

the browser explicitly previewed their site in FrontPage. They may have thought FrontPage

preview was sufficient testing. However, FrontPage preview is limited in indicating errors for

dynamic web pages because they require server side scripts. Additionally, FrontPage preview

will not reproduce the incompatibility issues that may arise when viewing the site in many

different browsers. Therefore, end user developers need to be encouraged to test their site in a

variety of browsers. User 4 used one of the most interesting debugging approaches. She viewed

 11

a diagram of the site’s navigation structure that FrontPage provides (figure 4) to find misdirected

and non-functioning links. Additionally, four out of six users looked at pop-up boxes

summarizing object properties in their debugging attempts and one user used the spell check

feature that FrontPage Provides.

Table 7.

Figure 4. FrontPage diagram of web site navigation structure

viewed by user 4 while debugging.

User Introduced Faults
 Five out of six users introduced their own bugs into the web site while working on the

development tasks and debugging (table 8). This argues for immediate and incremental fault

identification and localization techniques so that users can spot errors as they introduce them.

One such technique is the colored syntax highlighting discussed above that helped users 2 and 3

immediately recognize that they had introduced errors to the site. Such techniques need to be

developed for areas additional to syntax. Out of a total of 9 faults introduced by users, 6 were

incorrect or broken links. Since faulty links are such a prevalent error, it may be worth while

taking the notion of a site navigation diagram, such as FrontPage currently employs, and

developing it into a debugging tool. Additionally, users should be encouraged in some manner

to test the web based forms they build. Two users introduced forms that did not function to their

web site. This error is easily identified by testing but neither user tested the form after creating

it.

Debugging Approaches of FrontPage Study Participants

 User 1 User 2 User 3 User 4 User 5 User 6

Look at html code X X X X X -

Watch color highlighting of html code - X X - - -

Test in browser X X - X - X

Preview in FrontPage - - X - X X

Compare to working code/features in site - - X - - -

Look at diagram of navigation structure - - - X - -

Look at object properties X - X - X X

Use spell check - X - - - -

 12

Table 8.

Conclusion
 This study demonstrated the diverse emphasis users place on debugging in their

web development activities. Some users emphasize having a correct web site while others fail to

incorporate testing into their enhancement goals. We can not rely on all users to assign priority

to ensuring the correctness of web applications given other development tasks. Debugging tools

requiring users to initiate testing and debugging processes will not work for users who are

focused on development activities and are less aware of ensuring a correct application. A means

of automatically identifying and drawing users’ attention to faults seems preferable for

developers focused on task completion.

Our study participants actively used tools available to them in their debugging efforts,

such as html syntax highlighting, a preview option, object properties, and spell check. User 4

even creatively employed a diagram of site navigation structure that was not necessarily meant

for debugging. Users are willing to use debugging tools provided to them. It is a matter of

discovering which current debugging tools are affective, how they may be improved, and what

new tools can be added.

This study identified two areas of particular difficulty for end user web developers. Faults in

dynamic forms were the hardest for users to find and fix. Incorrect hyperlinks were the most

commonly overlooked fault as well as the fault most frequently introduced. These are areas in

which to concentrate support for end user debugging.

Participants were asked to make enhancements to the web site that were technically

beyond them. Therefore, it is interesting to note that rather than technical issues, all participants

but one felt the most challenging aspect of enhancing someone else’s web site is knowing what

that person intends with the site. For example User 5 comments that, “Enhancing the design of a

website isn’t easy because your style might conflict with their vision of the website.” User 2

talks about, “getting their[someone else’s] concepts of look and feel translated to the page.” This

indicates that end users regard the technical aspects of web site development as a means to an

end and are much more concerned with staying true to the intent of the web site. When

designing debugging methods and tools for end users, it should be taken into account that end

users are focused on accomplishing their goal. They do not have the same level of awareness of

and interest in technical issues as professional developers do.

Types of User Introduced Faults

 User 1 User 2 User 3 User 4 User 5 User 6

Incorrect or broken link X X X X

Unintended element on page X

Form that does not function X X

Incorrect form field name X

 13

References

[1] Jochen Rode, Mary Beth Rosson, “Programming at Runtime: Requirements and Paradigms

for Nonprogrammer Web Application Development,” Proc. IEEE Symposium on Human

Centric Computing Languages and Environments, Oct. 28-31, 2003, p. 23-30

[2] Jochen Rode, Mary Beth Rosson, Manuel Pérez Quiñones, “End User Development of Web

Applications,” End-User Development, eds. H. Lieberman, F. Paterno, and V. Wulf, F. Kluwer

Academic Publishers, 2005

[3] Warren Harrison, “The Dangers of End-User Programming,” IEEE software, Vol. 21, Issue

4, July-Aug. 2004, p. 5-7

[4][**] Margaret Burnett, Curtis Cook, Gregg Rothermel, “End-user development: End-user

software engineering,” Communications of the ACM, Vol. 47, Issue 9, September 2004, p. 53-58

[5] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Parabhakararao, M. Fisher II, M. Main,

“Debugging & Finding Faults: End-User Software Visualizations for Fault Localization” Proc.

ACM symposium on Software visualization, June 2003, p. 123-132

[6] A. Wilson, M. Bernett, L. Beckwith, O. Granatir, L. Casburn, C. Cook, M. Durham, G.

Rothermel, “Issues in Software Development: Harnessing Curiosity to Increase Correctness in

End-User Programming,” Proc. SIGCHI Conference on Human Factors in Computing Systems,

April 2003, p. 305-312

[7] S. Prabhakararao, C. Cook, J. Ruthruff, E. Creswick, M. Main, M. Durham, M.Burnett,

“Strategies and behaviors of end-user programmers with interactive fault localization, “Proc.

IEEE Symposium on Human Centric Computing Languages and Environments, Oct. 28-31,

2003, p. 11-22

[8][+] Brad Myers, John Pane, Andy Ko, “End-user Development: Natural Programming

Languages and Environments,” Communications of the ACM, Vol. 47, Issue 9, September 2004,

p. 47-52

[9][A] A. J. Ko, and B. A. Myers, “Designing the Whyline: A Debugging Interface for Asking

Questions About Program Failures,” CHI 2004, Vienna, Austria, April 24-29, p.151-158.

[10] D. Brown, M. Burnett, G. Rothermel, H. Fujita, F. Negoro, “Generalizing WYSIWYT

Visual Testing to Screen Transition Languages,” Proc. IEEE Symposium on Human Centric

Computing Languages and Environments, Oct. 28-31, 2003, p. 203-210

[11] J. Rode, J. Howarth, M. Pérez-Quiñones, M. Rosson, “An End-User Development

Perspective on State-of-the-Art Web Development Tools,” Technical Report TR-05-03,

Department of Computer Science, Virginia Tech, 2004.

