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ABSTRACT 
     In this paper, we investigate a new approach to the co-
occurrence matrix currently used to extract textural 
features: co-occurrence matrices for volumetric data.  
While traditional texture metrics have concentrated on 2D 
texture, 3D imaging modalities are becoming more and 
more prevalent, providing the possibility of examining 
texture as a volumetric phenomenon.  Just as computer 
graphics have used 3D textures as a more realistic 
alternative to 2D texture mapping, we expect that texture 
derived from volumetric data will have better 
discriminating power than 2D texture derived from slice 
data.  An experimental study has been conducted in which 
the results for textural features derived from 2D are 
compared to those results derived from using co-
occurrence matrices for volumetric data. Our preliminary 
experimental results indicate that the volumetric texture 
features have better discriminating power than 2D texture 
derived from slice data. 
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1.  Introduction 
 
     Texture is one of the most commonly used features 
used to analyze and interpret  images, specifically medical 
images. Texture is a measure of the variation of the 
intensity of a surface, quantifying properties such as 
smoothness, coarseness, and regularity.  It is often used as 
a region descriptor in image analysis and computer vision. 
Specifically, a textured region consists of a connected set 
of pixels that satisfy a given gray-level property which 
occurs repeatedly in an image region [1].  Several 
methods have been applied towards the analysis and 
characterization of texture within medical images 
including fractal dimension, run-length encoding, discrete 
wavelet transform, and two-dimensional co-occurrence 
matrices [2].  Of those mentioned, in texture analysis, 
two-dimensional dependence matrices [co-occurrence 
matrices] are extensively used; they are able to capture 

the spatial dependence of gray-levels which contributes to 
the perception of texture [1].   
     In this paper, we investigate a new approach to the co-
occurrence matrix currently used to extract textural 
features: co-occurrence matrices for volumetric data.  
While traditional texture metrics have concentrated on 2D 
texture, 3D imaging modalities are becoming more and 
more prevalent, providing the possibility of examining 
texture as a volumetric phenomenon [3].  Just as computer 
graphics have used 3D textures as a more realistic 
alternative to 2D texture mapping [4], we expect that 
texture derived from volumetric data will have better 
discriminating power than 2D texture derived from slice 
data.  Our goal is to be able to apply these co-occurrence 
matrices to volumetric data provided by Computerized 
Tomography (CT) modalities to calculate volumetric 
texture descriptors that can be used for segmentation and 
classification of soft tissues in CT studies.  
     At this point, it is critical to ma ke a clear distinction 
between our proposed approach and that of 3D co-
occurrence matrices.  As it is presented in the literature, 
3D co-occurrence matrices are calculated by summing 
pixel triplet probabilities in a 2D image, as opposed to the 
pixel pair probabilities that are summed in 2D co-
occurrence matrices [5].  The co-occurrence matrices for 
volumetric texture that we are introducing in this paper 
are 2D dependence matrices that are able to capture the 
spatial dependence of gray-level values in a set of three-
dimensional data (i.e. a set of CT scans for a given patient 
is given as a single three-dimensional input); these co-
occurrence matrices are calculated by summing pixel pair 
probabilities within a 3 dimensional space.   
     In the next section, the traditional 2D co-occurrence 
matrix is described, along with our new, proposed 
approach for volumetric texture.  Our experimental results 
and conclusions are presented in section 3, followed by 
future work in section 4.  
 
 
 
 

 



2.  Methodology 
 
2.1. Description of Two-dimensional Co-occurrence 
Matrices 
 
     Two -dimensional co-occurrence (gray-level 
dependence) matrices, proposed by Haralick in 1973, are 
generally used in texture analysis because they are able to 
capture the spatial dependence of gray-level values within 
an image [6].  A 2D co-occurrence matrix, P, is an n x n 
matrix, where n is the number of gray-levels within an 
image. For reasons of computational efficiency, the 
number of gray levels can be reduced if one chooses to 
bin them, thus reducing the size of the co-occurrence 
matrix.   The matrix acts as an accumulator so that P[i , j] 
counts the number of pixel pairs having the intensities i 
and j. Pixel pairs are defined by a distance and direction 
which can be represented by a displacement vector d = 
(dx,dy), where dx represents the number of pixels moved 
along the x-axis, and dy  represents the number of pixels 
moved along the y-axis of an image slice. 
      In order to quantify this spatial dependence of gray-
level values, we calculate various textural features 
proposed by Haralick [6, 7], including Entropy, Energy 
(Angular Second Moment), Contrast, Homogeneity, 
SumMean (Mean), Variance, Correlation, Maximum 
Probability, Inverse Difference Moment, and Cluster 
Tendency.  For the formulas and the intuitive 
interpretations of these features with respect to the texture 
characterization, we refer the reader to the Appendix 
section of the paper.  
   
2.2. Description of Our Proposed Approach: Co-
occurrence Matrices for Volumetric Data  
 
     We present a new approach for calculating co-
occurrence matrices: Co-occurrence Matrices for 
Volumetric Data.  Co-occurrence matrices for volumetric 
data are matrices that are able to capture the spatial 
dependence of gray-level values across multiple slices, 
whereas the two-dimensional co-occurrence matrices 
capture the spatial dependence of gray levels within a 
specific slice (scan). A co-occurrence matrix for 
volumetric data is an n x n matrix, where n represents the 
number of gray-levels within an image. For reasons of 
computational efficiency, the number of gray levels can 
be reduced if one chooses to bin them, thus reducing the 
size of the co-occurrence matrix.  Like the traditional co-
occurrence matrices, this matrix also acts as an 
accumulator so that P[i , j] counts the number of pixel 
pairs having the intensities i and j. However, this matrix is 
defined by specifying a displacement d = (dx, dy, dz), 
where dx and dy are the same as described for 2D co-
occurrence matrices, and dz represents the number of 
pixels moved along the z-axis of the three-dimensional 
image.  
     We take the new resulting matrices and we quantify 
the spatial dependence of gray-level values by calculating 

the 10 Haralick textural features mentioned in the 
previous subsection, and described in the appendix [6, 7]. 
 
3. Preliminary Experimental Results and 
Conclusions  
 
3.1.   Data Description 
 
     In order to evaluate our approach, we tested it on a set 
of 344 coronal CT scans obtained from 2 normal CT 
studies that were provided by Northwestern Memorial 
Hospital1. Each scan is a 512 x 512 cross-sectional gray-
level slice through the human body; the slices are in 
DICOM2 format which have up to a 16 bit gray-level 
resolution.   
     Since our goal is to calculate the volumetric texture for 
different organs in the CT scans, as a pre-processing 
stage, we segmented different regions of interest 
(backbone, heart, kidney, liver, and spleen) using Active 
Contours (snakes) [8, 9].       
 

Table 1: Segmented Data Summary 

Organ Patient 1 (slices) Patient 2 (slices) 
Backbone 68 72 
Heart  27 25 
Kidney (L and R) 27 27 
Liver 29 29 
Spleen 20 20 
Total Slices 171 173 

 
 
A  snake is a function that recreates the boundary of a 
particular object when given a set of initial points around 
the region of interest, as well as values for parameters that 
determine the boundary’s smoothness. One of the main 
advantages of using snakes for region segmentation is the 
capability of the snake approach to segment regions with 
irregular shapes such as in the case of the backbone. 
      At the end of the segmentation stage, a stack of slices 
for each organ per patient is  obtained as presented in 
Table 1.  In 2D, each slice within a stack is processed 
individually, while in 3D each stack forms a single 3D 
image.  Once segmentation is completed, the two 
approaches are implemented on the image data.  The 
additional steps that are followed in order to compare the 
discriminative power of the two approaches are presented 
in Figure 1.  The actual implementations of these 
processes, as well as the results yielded are described in 
more detail in the upcoming sections. 

                                                 
1This project is an ongoing research collaboration between CTI 
Intelligent Multimedia Processing Laboratory and Northwestern 
Memorial Hospital 
2 DICOM stands for Digital Imaging and Communications in 
Medicine; it is a standard format for medical images. 



 
Figure 1: The diagram of the system 

 
 
3.2. Two-Dimensional Co-occurrence Matrices 
 
     We first implemented a two-dimensional co-
occurrence matrix as a basis for comparison with our 
proposed method.   As previously mentioned, the range of 
gray-level values within a given image determines the 
dimensions of a two-dimensional co-occurrence matrix.  
The segmented slices that we are conducting our 
experiments on, however, have 4096 gray-levels, which 
would make our co-occurrence matrix 4096 x 4096.  A 
matrix of this size is too large, so we split our gray levels 
into bins by a straight division of 16 in order to be 
computationally efficient. Therefore, gray levels from 0 to 
15 fall into bin 1, gray levels from 16 to 32 fall into bin 2, 
and so on, leaving us with 256 bins [10]. 
     We calculated the normalized 2D co-occurrence 
matrices for each segmented 2D slice using four 
directions and five distances, giving us 20 different 
displacement vectors, and thus 20 different matrices for 
each segmented slice.  These displacement vectors (d = 

(dx, dy)) are listed in Table 2, and D in the table 
represents the distance variable with values from 1 pixel 
to 5 pixels [11]. 
 

Table 2: Displacement vectors for 2D data 

Direction Displacement Vector Representation for 
Direction 

0o (D,0) 
45o (D,D) 
90o (0, D) 
135o (-D, D) 

 
For each of these 20 matrices we calculated the ten 
Haralick features that were previously mentioned in 
Section 2.1.  Therefore, 20 values were obtained for each 
texture descriptor; in order to compare the values for the 
2D data with those for volumetric data, the average value 
per descriptor was calculated for each organ.  Figure 2 
shows the diagram of the 2D texture descriptors’ 
calculation. 

 
 
 

 
 
 
 
 
 
 

 
 

Entropy Energy Contrast  Homogeneity SumMean Variance Correlation 
Maximum  
Probability 

Inverse 
Difference 
Moment 

Cluster 
Tendency 

3.93 0.043 7.33 0.55 69.99 21.53 0.072 0.10 0.44 78.78 
 

 
 
 
 

 
 

Figure 2: Feature calculation for 2D data (2D slice of an organ) 



     Since the texture of a particular human body organ 
should remain the same regardless of whose body it is 
located in, we are focusing on inter-organ relationships 
rather than inter-patient relationships when we evaluate 
the traditional and the new proposed co-occurrence matrix 
approaches.  Therefore, in order to visualize the 
discriminative power of the texture descriptors for the two 
approaches, a histogram was created for each feature and 
each organ using the mean values for the corresponding 
organ slices, and combining the data for patient 1 and 
patient 2.  These histograms were automatically generated 
by SPSS, a statistical software program which allows one 
to analyze and describe data.  Figure 3 shows the 
histogram for spleen data from both patient 1 and patient 
2 (a total of 40 segmented spleen slices.  After the 
calculation of the volumetric descriptors, the volumetric 
values will be represented on these histograms for 
interpretation.    The visualization of the other features 
and organs is done in a similar manner. 
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Figure 3: Histogram for the 2D Energy  descriptor for the Spleen 
data 

3.3. Co-occurrence Matrices for Volumetric Data 
 

     After this basis for our comparison was completed, we 
implemented our proposed method for the volumetric 
data.  Just as with 2D co-occurrence matrices, these 
matrices are also two-dimensional and required the gray 
level values to be reduced to 256 bins in order to be 
computationally efficient. 
     In 2D, each slice for a particular organ led to the 
creation of 20 matrices (four angles and 5 distances) and 
thus, only for a single organ (such as spleen) hundreds of 
co-occurrence matrices have to be calculated (20 spleen 
slices per patient x 20 co-occurrence matrices as shown in 
Table 1.  The number only increases as one moves onto 
the various other organs since the number of slices 
segmented out for them is greater.     
     Using volumetric data, however, there is only one 
input per organ: a volumetric (3D) image that is 
comprised of several slices “connected together” by the z-
axis.  In other words, we view a set of medical scans for a 
patient as one image that is three-dimensional as shown in 
Figure 4.  We calculated normalized co-occurrence 
matrices for volumetric data for each of these 3D images.  
However, now that we have the third dimension, we are 
no longer just using the four directions and five distances 
summarized in Table 2.    In the volumetric case, there are 
26 directions and only 13 are different.   
     In addition to the 13 directions, we are using 5 
distances, which will produce a total of 65 displacement 
vectors, and thus 65 co-occurrence matrices.  Therefore, if 
θ is measured in the XY plane starting at 0 in the positive 
x direction, and φ is measured “above” and “below” the 
XY plane, then the 13 directions and their corresponding 
displacement vectors (d = (dx, dy, dz)) can be described as 
shown in Table 3 (D = distances from 1 pixel to 5 pixels). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Entropy Energy Contrast  Homogeneity SumMean Variance Correlation 
Maximum  
Probability 

Inverse 
Difference 
Moment 

Cluster 
Tendency 

4.25 0.033 17.29 0.47 69.80 13.75 0.025 0.085 0.39 37.72 

Slice 3 

Slice 2 

Slice 1 

Slice 3 

Slice 2 

Slice 1 

Figure 4: Feature calculation for volumetric data (an organ across multiple slices) 



 
Table 3: Displacement Vectors for Co-occurrence Matrices for 

Volumetric Data 
Direction  

(θ, φ) 
Displacement 

Vector 
Corresponding 

Duplicate Vector 

(0o, 45  o) (D, 0, D) (-D, 0, -D) 
(0o, 90  o) (D, 0, 0) (-D, 0, 0) 
(0o, 135 o) (D, 0, -D) (-D, 0, D) 
(45o, 45 o) (D, D, D) (-D, -D, -D) 
(45o, 90 o) (D, D, 0) (-D, -D, 0) 
(45o, 135  o) (D, D, -D) (-D, -D, D) 
(90o, 45 o) (0, D, D) (0, -D, -D) 
(90o, 90 o) (0, D, 0) (0, -D, 0) 
(90o, 135  o) (0, D, -D) (0, -D, D) 
(135o, 45 o) (-D, D, D) (D, -D, -D) 
(135o, 90 o) (-D, D, 0) (D, -D, 0) 
(135o, 135 o) (-D, D, -D) (D, -D, D) 
(-, 0 o) (0, 0, D) (0, 0, -D) 

 
     It is important to note this number of matrices is fixed 
per organ despite the number slices that were segmented.  
Consequently, for the previous example, the number of 
400 co-occurrence matrices for 2D spleen data is reduced 
to 65 matrices for volumetric data.     
     For each of these 65 matrices per segmented organ, we 
calculated the same ten Haralick features as we calculated 
for the 2D co-occurrence matrices.  Then, we averaged 
the 65 values for descriptor per organ and thus, producing 
a single set of values for the 10 features per organ for 
each patient. Therefore, for our current data set consisting 
of two patients, we will have 2 values for each descriptor, 
one for patient 1 and one for patient 2.  
     In order to compare the 2D texture features with the 
volumetric texture features, in addition to using 
histograms to visualize the relationships between the two 
sets of features, we examine the values for the volumetric 
data with respect to the range of the 2D data; this range is 
given by the maximum and minimum values per 
descriptor.  In doing this, we ask the question: “Does the 
volumetric data fall within the corresponding ranges of 
the 2D data?” The results of our analysis are summarized 
for each feature in Table 4 and for each organ in Table 5. 
 
 
Table 4: The Distribution of the volumetric data with respect to 
the 2D data 

Features # of Organs  (Min , Max) 
Entropy 5 5 
Energy 5 5 
Contrast 5 3 

Homogeneity 5 3 
SumMean 5 5 
Variance 5 5 

Correlation 5 4 
Maximum 
Probability 5 5 

Inverse 
Difference 
Moment 

5 3 

Cluster 
Tendency 5 5 

TOTAL 50 43 

 

Table 5: The Distribution of the volumetric data with respect to 
2D organ data 

 # of Features. Min - Max 
Backbone  10 10 

Heart 10 7 
Kidney 10 6 
Liver 10 10 

Spleen 10 10 
TOTAL 50 43 

 
3.4.  Conclusion 
 
     Our preliminary results are promising, especially given 
the very small data set. Table 4 shows the number of 
organs analyzed per feature (column 2), followed by the 
number of those organs (column 3) whose volumetric 
results fall within the minimum and maximum of the 
corresponding 2D data. Overall, we found that 86% of the 
volumetric feature values fall within the corresponding 
2D feature ranges across all organs. Of the 10 Haralick 
features, we found that Contrast, Homogeneity, and 
Inverse Difference Moment have the least consistency 
between the 2D and volumetric data.  Each of these 
features is calculated by a specific difference of intensities 
in the pixels of the pair, and this differencing is sensitive 
to the ratio of inter-slice to inter-pixel distance. However, 
while this difference might be problematic for organ 
tissue classifiers based on 2D data, we expect that, 
ultimately, the results obtained using co-occurrence 
matrices for volumetric data will provide more 
information about the textures within an organ and 
therefore, texture derived from volumetric data will have 
better discriminating power than 2D texture derived from 
slices.   
     Table 5 shows the number of features analyzed per 
organ (column 2), followed by the number of features 
whose volumetric results fall within the minimum and 
maximum of the corresponding 2D data (column 3).  Of 
the five organs, we found that the Heart and Kidney have 
the least consistency between the volumetric data and the 
2D data.  This inconsistency can be explained by the 
varying textures within these organs as moving from one 
slice to the next.  While 2D deals with individual slices, 
and thus separated slice textures, volumetric data ties 
these textures together; a single value per feature will take 
into account all textures within a particular organ.  We 
expect that the results obtained using co-occurrence 
matrices for volumetric data provide more information 
about the textures within an organ and therefore, texture 
derived from volumetric data will have better 
discriminating power than 2D texture derived from slice. 

 
4. Future Work 
 
     In this paper, a new approach for volumetric texture 
characterization has been presented.  Based on our 
preliminary results, we are encouraged to continue our 
investigation of co-occurrence matrices for volumetric 



data and analyze the discriminating power of the texture 
features derived from them.  We plan to perform more 
tests on the CT scans by either adding more CT scans 
from different patients or divide the current slices into 
regions of interest as proposed in [11].   
     Furthermore, we hope to successfully use the 
volumetric texture descriptors presented in this paper to 
build robust classifiers for volumetric textures in CT 
studies.   These classifiers will also allow the 
development of a texture vocabulary for organs’ tissues in 
terms of low-level texture features derived from pixel 
data.  The texture vocabulary can also be used to enhance 
several algorithms for object segmentation in CT 
modalities such as the Snake algorithm used in this paper. 
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Feature  Formula What is measured? 

Entropy ∑ ∑−
M

i

N

j

jiPjiP ],[log],[  
Measures the randomness of a gray-level distribution. The 
Entropy is expected to be high if the gray levels are 
distributed randomly through out the image. 

Energy(Angular 
Second Moment) ∑ ∑

M

i

N

j

jiP ].[2  
Measures the number of repeated pairs. The Energy is 
expected to be high if the occurrence of repeated pixel 
pairs is high. 

Contrast  ∑ ∑ −
M

i

N

j

jiPji ].[)( 2  
Measures the local contrast of an image. The Contrast is 
expected to be low if the gray levels of each pixel pair are 
similar. 

Homogeneity ∑ ∑ −+

M

i

N

j ji
jiP

||1
].[  

Measures the local homogeneity of a pixel pair. The 
Homogeneity is expected to be large if the gray levels of 
each pixel pair are similar 

SumMean  (Mean) ]),[],[(
2
1

jijPjiiP
M

i

N

j

+∑ ∑  
Provides the mean of the gray levels in the image. The 
SumMean is expected to be large if the sum of the gray 
levels of the image is high. 

Variance 2 21
(( ) [ , ] ( ) [ , ])

2

M N

i j
i P i j j P i jµ µ− + −∑ ∑  

Variance tells us how spread out the distribution of gray-
levels is. The Variance is expected to be large if the gray 
levels of the image are spread out greatly. 

Correlation ∑ ∑ −−M

i

N

j

jiPji
2

].[))((
σ

µµ  
Provides a correlation between the two pixels in the pixel 
pair. The Correlation is expected to be high if the gray-
levels of the pixel pairs are highly correlated. 

Maximum Probability 
(MP) ],[

,

,
jiPMax

NM

ji
 

Results in the pixel pair that is most predominant in the 
image. The MP is expected to be high if the occurrence of 
the most predominant pixel pair is high. 

Inverse Difference 
Moment (IDM) ∑ ∑ −

M

i

N

j
kji

jiP
||
].[  ji ≠  

Inverse Difference Moment tells us about the smoothness 
of the image, like homogeneity. The IDM is expected to 
be high if the gray levels of the pixel pairs are similar. 

Cluster Tendency ∑ ∑ −+
M

i

N

j

k jiPji ],[)2( µ  Measures the grouping of pixels that have similar gray-
level values. 

 


