
Using Model Checking with
Symbolic Execution for the

Verification of Data-Dependent
Properties of MPI-Based Parallel

Scientific Software

Anastasia Mironova

Problem

• It is hard to create “correct” parallel programs
– Concurrency adds complexity and introduces

problems such as deadlock
– Non-determinacy makes testing even less effective

• Model checking techniques have been applied
to concurrent systems
– But focus on patterns of communication instead of

correctness of the computation
– Limited experience with MPI-based programs

Objective

• Verification of MPI-based programs using
model checking
– Freedom from Deadlock
– Computational correctness

Approach
• Use a model checker to explore all possible

executions
• Deadlock detection

– Modeling MPI functions
– Abstracting away unnecessary data

• Computational correctness
– Extend the model checker to create symbolic

representations of the executions
– Compare the sequential program’s symbolic

representation of the result to the parallel program’s
representation

Outline

• Background on MPI
• Verification for freedom from deadlock
• Verification using symbolic execution
• Experimental results

Overview of MPI

• Origin: result of work of the Committee formed at
the Supercomputing ’92 conference

• Significance: widely used in scientific
computation

• Communication: message passing in a
distributed-memory environment

• Types of operations supported:
– Blocking/non-blocking
– Collective

Example MPI Program
Multiplication of two 3X3 matrices A and B with two processes

AProc 1MPI_BcastProc 0

B
A

BMPI_Bcast

A AProc 0 Proc 1

B B
C C= =

X X X0 00

X X X00 0

0XX X00

Example MPI Program
Proc 0 Proc 1A A

B B
C C= =

X X X0 00

X

X

0 0 MPI_Reduce X X0

0X X00

Proc 0 Proc 1A
B
A

C
B

XC X X

D = X X X

XX X

Example MPI Program: Code
/* Broadcast entries of A and B */
MPI_Bcast(A, nElts, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast(B, nElts, MPI_DOUBLE, 0, MPI_COMM_WORLD);
/* Computation */
for (i = 0; i<n; i++)

for (j=0; j<n; j++) {
C[(i*n)+j]=0;
if (((i*n)+j)%size==rank) for (k = 0; k < n; k++) C[(i*n)+j] +=

(double)A[(i*n)+k] * (double)B[(k*n)+j];
}

}
/* Reduce entries in C to the corresponding entries D on

the root process*/
for (i = 0; i<nElts; i++)

MPI_Reduce(&C[i], &D[i], 1, MPI_DOUBLE, MPI_MAX, 0,
MPI_COMM_WORLD);

double *A, *B; //two initial matrices
double *C; //intermediate result
double *D; //final result, D = AB
/* Read matrix dimensions from file*/
if(rank == 0){

fscanf(inFile, "%d\n", &n);
nElts = n*n;

}
/* Broadcast the dimension and the total number of

elements in each matrix*/
MPI_Bcast(&nElts, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
/* Allocate memory for A, B, and C*/
A, B, C = (double *) malloc(nElts * sizeof(double));
/* Root process allocates memory for D and reads

entries of A and B from file */
if (rank==0){

D = (double *) malloc(nElts * sizeof(double));
for(i=0; i<nElts; i++) {

if (i%n==0) fscanf(inFile, "\n");
fscanf(inFile, "%lf", &(A, B[i]));

}
}

Verification Process Overview

• Model checking
• Modeling the program

– MPI functions
– Deadlock free
– Computation correctness

• Carrying out the verification

Typical Model Checking
Architecture

Program
(C, MPI)

Program Model
(PROMELA)

Model Checker
(SPIN)

property verified counter example

(execution trace)

produced

•Builds a graph representing
all possible states of the
system
•State explosion problem:
number of states is
exponential in the number of
concurrent processes
•Hence necessary to create
an abstracted version of the
program to eliminate
unnecessary details wrt the
property being proved

• Usually represented in
temporal logic or sometimes
as an automaton

Property

abstraction

Example Code

• Matrix Multiplication -
written by my classmates and myself as one of the assignments
for the Programming Languages Course in Computer Science
(CS331) at the University of Alaska, Anchorage

• Gauss-Jordan Elimination –
written at the University of Massachusetts, Amherst under the
guidance of Dr. Stephen Siegel

Testing was performed on both of these
implementations and based on the results the code
was assumed to be correct.

Program Model: MPI

Key Abstractions:
• Processes and communication channels
• Collective MPI functions
• Messages

Processes and Channels in
PROMELA

• Definition of Processes:

active proc Root{…}
active proc [numprocs - 1] NonRoot{…}
active proc Coordinator{…}

• Definition of Channels:
/*Data channels from root to non-root nodes*/
chan chan_from_root[nprocs]

/*Data Channels from non-root nodes to root */
chan chan_to_root[nprocs]

/*Collective communication channels from nodes to
Coordinator */
chan chan_c[nprocs]

Coordinator

Root

NonRoot[0]

NonRoot[nprocs -1]

…

Modeling MPI Functions
Matrix multiplication example utilizes two MPI functions,
both of which are collective:

• MPI_Bcast(void *buffer, int count,
MPI_Datatype datatype, int root, MPI_Comm comm)
Broadcasts a message from the process with rank root to all
processes of the group

• MPI_Reduce(void *sendbuf, void *recvbuf, int
count, MPI_Datatype datatype, MPI_Op op, int
root, MPI_Comm comm)
Combines the elements provided in the input buffer of each
process in the group, using the operation op, and returns the
combined value in the output buffer of the process with rank root

Based on the description in Siegel and Avrunin,
introduce another process for coordinating collective
operations…

Modeling MPI Functions:
Coordinator Process

The Coordinator process is used to model the collective MPI functions MPI_Bcast
and MPI_Reduce:

MPI_Bcast MPI_Reduce
BCAST REDUCE

Proc 0 Proc 0
Proc 1 Proc 1 CoordinatorCoordinator… …… …
Proc n Proc n

…wait for all processes to receive data from root… …wait for the root process to collect data from all procs…

DONE DONE
Proc 0 Proc 0

CoordinatorProc 1Proc 1 Coordinator
… ……

Proc n Proc n

Coordinator Process: PROMELA
Code

active proctype Coordinator() {
/* Receive initial messages from all processes and confirm that all nodes agree on the type

of communication in progress*/
do
:: chan_c[0]?im;
i = 1;
do
:: i < nprocs -> chan_c[i]?cm; assert(im == cm); i++
:: else -> i = 0; break
od;
if
:: im == BCAST ->
/* Interpret a broadcast message, receive a DONE message from every node */
do
:: i < nprocs -> chan_c[i]?cm; assert (cm == DONE); i++
:: else -> i = 0; break
od

:: im == REDUCE ->
/* Interpret a reduce message, receive a DONE message from the root process */

…
fi

od
}

Messages
Messages between the coordinator and processes
participating in the computation are abstracted in the
following manner:
mtype = {BCAST, REDUCE, DONE},
where
– BCAST is a message sent to the Coordinator process by every

process participating in the computation at the beginning of all
the MPI_Bcast collective routines

– REDUCE is sent to the Coordinator process by every process
participating in the computation at the beginning of all the
MPI_Reduce collective routines

– DONE is sent to the Coordinator process by processes
participating in the computation upon completion of every
collective operation as expected by the Coordinator process

Modeling to Check Freedom From
Deadlock

• Abstractions to remove details about data
mtype = {BCAST, REDUCE, DONE, DATA}

Example:
MPI_Bcast (0, DATA);
- process with rank 0 broadcasting an abstracted data unit to all
process participating in the computation

• Synchronization issues
channel!message
if
:: 1 -> empty(channel)
:: 1 -> skip
fi

Check for Freedom from Deadlock

• Apply SPIN
• No need for special property definition
• Scalability

– raw
– utilizing optimizations of SPIN results in
extended capabilities

Modeling Computation
• MPI Communication – the same as in the deadlock model

• Add support for symbolic expressions in PROMELA
– Symbolic expressions

are stored in byte arrays in
prefix notation
typedef Expn{
byte length;
byte array[maxExpnSize]

}

Example:

a2*a3 + a4*a5 in infix notation is equivalent to +*a2a3*a4a5 in prefix notation

and to in the model

a22a00

A = B =

+ * 2 3 * 4 5

a11

a33

a77a66

a44

a88

a55

b99 b1010 b1111

b1313b1212 b1414

b1616 b1717b1515

*

Actually, integer constants represent operators, e.g. #define 255 PLUS*

Modeling Computation During
Verification

- Add functions to manipulate symbolic
expressions

inline addTo(a, b){…} results in a = a + b
inline multBy(a, b){...} results in a = a * b

Example:
a b a+b* * +

32 5 =+ 4 *

32

*

4 5

* 2 3 + * 2 3 * 4 5* 2 3

Validating the Results
Key Idea:
1. Implement both the sequential and parallel versions of the algorithm
2. Apply SPIN and compare the symbolic expressions produced
3. Conclude that the result of the parallel computations is correct if it

matches the output of the sequential code.

Matrix multiplication example:
1. Symbolic computation is performed in parallel, generating a matrix of

expressions on the root process
2. The root process does the symbolic computations sequentially
3. The root process loops through the two resultant structures checking that

the two are the same via a set of assertions

sequential parallel

results

compare

More Interesting Example:
Gauss-Jordan Elimination

Common application finding a matrix inverse

where I is the identity matrix, to obtain a matrix of the form

is then the inverse of A if such exists and [A
I] is in the reduced row-echelon form.

More Interesting Example:
Gauss-Jordan Elimination

Definition: reduced row-echelon form
Properties of a matrix in a reduced row-echelon form:
1. Each row contains only zeros until the first non-zero element,

which must be a 1
2. As the rows are followed from top to bottom, the first nonzero

number occurs further to the right than in the previous row
3. The entries above and below the first 1 in each row must be all 0

Performing the Gauss-Jordan Elimination algorithm on any
matrix results in the equivalent reduced row-echelon form of
that matrix

Gauss-Jordan Elimination:
Example

Step 1. Locate the leftmost column (vertical line)
that does not consist entirely of zeros

0 0 -2 0 7 12

2 4 -10 6 12 28

-5 6 -5 -12 4

Leftmost nonzero column

Gauss-Jordan Elimination:
Example

Step 2. Interchange the top row with another row,
if necessary, so that the entry at the top column
found in Step 1 is different from zero

0 0 -2 0 7 12 Interchange the first and
second rows

2 4 -10 6 12 28

-5 6 -5 -12 4

Gauss-Jordan Elimination:
Example

Step 3. If the entry that is now at the top of the
column found in Step 1 is a, multiply the first row
by 1/a in order to introduce a leading 1

2 41 2 X 1/2-10-5 63 126 2814

0 0 -2 0 7 12

-5 6 -5 -12 4

Gauss-Jordan Elimination:
Example

Step 4. Add suitable multiples of the top row to
the rows above and below so that all entries
below leading 1 become zeros

1 2 -5 3 6 14 2 times the first row was added
to the third row

0 0 -2 0 7 12

2 4 -5 6 -5 -10 0 5 0 -17 -29

Gaussian-Jordan Elimination
Algorithm

The above procedure is repeated for
every row of the matrix to produce the
reduced row-echelon form of the
example matrix:

0 0 -2 0

2

2

7 12

4

4

-10

-5

6

6

12

-5

28

-1

1 2 0 3

0

0

0 7

0

0

1

0

0

0

0

1

1

2

Gauss-
Jordan
Elimination

Initial matrix: Reduced Row-Echelon
Form of the initial matrix:

Matrix Multiplication vs. Gauss-
Jordan Elimination

Why is it harder to verify the correctness of
the Gauss-Jordan Elimination?

• Need to introduce branching when
conditions are functions of data

• The property is harder to express since
there is no closed formula of the answer,
again, consequence of data dependencies

Example of Symbolic Gauss-
Jordan Elimination on a 2X2 matrix

a11 11 = 0= 0Case 1:A = a1111 a12 a21 21 = 0= 012

a2121 a2222
a12 12 = 0= 0
a22 22 = 0= 0

0 0

0 0

Case 2: a11 11 = 0= 0 Case 3: a11 11 = 0= 0
a21 21 = 0= 0
a12 12 != 0!= 0
a22 22 freefree

0 1

0 0
a11 11 != 0!= 0
a2222-- aa2121*a*a1212/a/a1111
!= 0!= 0

a21 21 = 0= 0
a12 12 = 0= 0
a22 22 != 0!= 0

0 0

0 1

a11 11 = 0= 0
a21 21 != 0!= 0
a12 12 freefree
a22 22 freefree
a11 11 != 0!= 0
a2222-- aa2121*a*a1212/a/a1111
!= 0!= 0

Case 4:
1 0

0 1

Dealing with Data Dependency
a11 11 ? 0? 0Exploring Both Branches:

a11 11 != 0!= 0a11 11 = 0= 0

PROMELA Code:
if

:: 1 -> /* Assume (a11 == 0) */

/* Add expression (a11 == 0) to the path conditions table */
…

:: 1 -> /* Assume (a11 != 0) */
/* Add expression (a11 != 0) to the path conditions table */
…

fi

Experimental Evaluation
• Matrix Multiplication Example

Matrix dimensions: nxn, where n = 2, 3, …, 7
Number of processes: numprocs = 1, …, 10

• Gauss-Jordan Elimination
– Sequential

Matrix sizes: mxn, where m, n = 2, 3, 4
– Parallel

Implementation and experimental runs in progress

Measured memory usage
Main issue is the size of the State Vector;
some runs use 85% of the entire machine memory

Distinguishing feature
the common problem of state explosion of
overshadowed by issues associated with the size of the State

Vector

Experimental Results: Scalability of
the Computation

• …Graphs

Experimental Results: Optimization
Options in SPIN

-DCOLLAPSE

Future Work

• Improvement of PROMELA models
– Data structures
– Incorporating C code
– Theorem proving packages

• Using a different model checker, e.g.
MOVer (MPI-Optimized Verifier)

• Exploring other non-trivial computational
examples

Conclusions
• Deadlock

– demonstrated applicability of abstractions
– scaled somewhat reasonably – ability to do non-trivial sizes of

matrices
• Computational correctness

- sequential model capable of handling non-trivial sizes
of matrices
- using SPIN to create symbolic expressions and
comparing these expressions for the parallel and
sequential versions of the algorithm

• Initial experimental results are
promising!

Gauss-Jordan Elimination:
Procedure

Step 1. Locate the leftmost column (vertical line)
that does not consist entirely of zeros

0 0 -2 0 7 12

2 4 -10 6 12 28

-5 6 -5 -12 4

Leftmost nonzero column

Gauss-Jordan Elimination:
Procedure

Step 2. Interchange the top row with another row,
if necessary, so that the entry at the top column
found in Step 1 is different from zero

0 0 -2 0 7 12 Interchange the first and
second rows

2 4 -10 6 12 28

-5 6 -5 -12 4

Gauss-Jordan Elimination:
Procedure

Step 3. If the entry that is now at the top of the
column found in Step 1 is a, multiply the first row
by 1/a in order to introduce a leading 1

2 41 2 X 1/2-10-5 63 126 2814

0 0 -2 0 7 12

-5 6 -5 -12 4

Gauss-Jordan Elimination:
Procedure

Step 4. Add suitable multiples of the top row to
the rows above and below so that all entries
below leading 1 become zeros

1 2 -5 3 6 14 2 times the first row was added
to the third row

0 0 -2 0 7 12

2 4 -5 6 -5 -10 0 5 0 -17 -29

Background
• Distributed computing
MPI, the Message-Passing Interface (C bindings)
• Symbolic execution of programs with non-trivial

arithmetic
– Matrix multiplication
Multiplication of two square matrices;
– Gauss-Jordan elimination
Computing a reduced row-echelon form of any nxm

matrix on n processes
• Model checking
SPIN, Simple PROMELA INterpreter

Matrix Multiplication
Implementation in C using MPI:
• Written as an assignment for CS331 Programming Languages,

University of Alaska Anchorage
• Structure and algorithm:

– Files:
matrices.txt – contains matrix size and values of all entries in
initial matrices
matrixmul.c – code;

– Algorithm:
1. Root process reads the dimensions (n) of the input matrices (A,

B) and values of their respective entries
2. Root process broadcasts n, A, and B to all processes
3. Each process computes an entry of the resultant matrix

represented by a new matrix C if its rank is equal to the remainder
of the index of that entry (in row major order)

4. The final result of the computation is accumulated in a matrix D
on the root process by reducing the maximum of the
corresponding entries in C from all the processes

Matrixmul.c
double *A, *B; //two initial matrices
double *C; //intermediate result
double *D; //final result, D = AB
/* Read matrix dimensions from file*/
if(rank == 0){

fscanf(inFile, "%d\n", &n);
nElts = n*n;

}
/* Broadcast the dimension and the total number of elements in each matrix*/
MPI_Bcast(&nElts, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
/* Allocate memory for A, B, and C*/
A, B, C = (double *) malloc(nElts * sizeof(double));
/* Root process allocates memory for D and reads entries of A and B from file */
if (rank==0){

D = (double *) malloc(nElts * sizeof(double));
for(i=0; i<nElts; i++) {

if (i%n==0) fscanf(inFile, "\n");
fscanf(inFile, "%lf", &(A, B[i]));

}
}

Matrixmul.c
/* Broadcast entries of A and B */
MPI_Bcast(A, nElts, MPI_DOUBLE, 0,

MPI_COMM_WORLD);
MPI_Bcast(B, nElts, MPI_DOUBLE, 0,

MPI_COMM_WORLD);
/* Computation */
for (i = 0; i<n; i++)
for (j=0; j<n; j++) {
C[(i*n)+j]=0;
if (((i*n)+j)%size==rank) for (k = 0; k < n;
k++) C[(i*n)+j] += (double)A[(i*n)+k] *
(double)B[(k*n)+j];

}
}
/* Reduce entries in C to the

corresponding entries D on the root
process*/

for (i = 0; i<nElts; i++)
MPI_Reduce(&C[i], &D[i], 1, MPI_DOUBLE,

MPI_MAX, 0, MPI_COMM_WORLD);

C(0) = X 0 0 C(1)= …

X C(2)= …0 0

C(3)= …X0 0

D = 0 1 2

3 0 1

2 3 0

Properties

1. Freedom from deadlock

2. Correctness of computations

Modeling MPI Functions
matrixmul.c utilizes two MPI functions, both of which
are collective:

• MPI_Bcast(void *buffer, int count, MPI_Datatype
datatype, int root, MPI_Comm comm)
Broadcasts a message from the process with rank root to all
processes of the group, itself included

• MPI_Reduce(void *sendbuf, void * recvbuf, int
count, MPI_Datatype datatype, MPI_Op op, int
root, MPI_Comm comm)
Combines the elements provided in the input buffer of each
process in the group, using the operation op, and returns the
combined value in the output buffer of the process with rank root

Based on the description in Siegel and Avrunin,
Modeling MPI Programs for Verification, introduce
another process for coordinating collective operations…

Coordinator Process
active proctype Coordinator() {

/* Receive initial messages from all processes and confirm that all nodes agree on the type
of communication in progress*/
do
:: chan_c[0]?im;
i = 1;
do
:: i < nprocs -> chan_c[i]?cm; assert(im == cm); i++
:: else -> i = 0; break
od;
if
:: im == BCAST ->
/* Interpret a broadcast message, receive a DONE message from every non-root node */
do
:: i < nprocs -> chan_c[i]?cm; assert (cm == DONE); i++
:: else -> i = 0; break
od

:: im == REDUCE ->
/* Interpret a reduce message, receive a DONE message from the root process */

…
fi

od
}

Abstraction of C Code
Processes in PROMELA:
active proc Root{…}
active proc [nprocs - 1] NonRoot{…}
active proc Coordinator{…}

/*Data channels from root to non-root nodes*/
chan chan_from_root[nprocs]
/*Data Channels from non-root nodes to root */
chan chan_to_root[nprocs]
/*Collective communication channels from nodes to
Coordinator */
chan chan_c[nprocs]

Coordinator

NonRoot[0]

Root…

NonRoot[nprocs -1]

Deadlock Model

• Message abstraction

mtype = {BCAST, REDUCE, DONE, DATA}

• Modeling possible need for synchronization of
every send operation by implementing a non-
deterministic choice
if

::1 -> empty(channel)
::1
fi

Deadlock Model
/* Reduce routine executed by the root process*/
inline MPI_ReduceR(root){

chan_c[0]!REDUCE; /* Initiate reduce */
…
do
:: i < nprocs ->
if
:: i != root ->
/* Receive data from non-root procs */
chan_to_root[i]?DATA

:: else ->
fi;

…
od;
chan_c[_pid]!DONE; /* Notify coordinator upon

completion */
}

/* Reduce routine executed by a non-root
process*/
inline MPI_ReduceNR(root){

chan_c[_pid]!REDUCE; /* Initiate reduce */
chan_to_root[_pid]!DATA; /* Send data to root */
chan_c[_pid]!DONE; /* Notify coordinator upon

completion */
}

inline MPI_Bcast(datum, root){
/* Initiate broadcast */
chan_c[_pid]!BCAST;
if
:: _pid == root ->
/* Send data to all procs */
bcastData(datum, root)

:: else ->
/* Receive data from root */
chan_from_root[_pid]?datum

fi;
/* Notify coordinator upon completion*/
chan_c[_pid]!DONE;
/* Account for a possibility of a blocking

send */
if
::1 -> empty(chan_c[_pid])
::1 ->
fi

}

Deadlock Model
/* Root process */
active proctype Root() {

MPI_Bcast(DATA, 0); /* Broadcast matrix dimension n */
MPI_Bcast(DATA, 0); /* Broadcast n*n */
MPI_Bcast(DATA, 0); /* Broadcast A */
MPI_Bcast(DATA, 0); /* Broadcast B */

/* Reduce the result */
do
:: i < n*n -> MPI_ReduceR(0); i++
:: else -> i = 0; break
od

}

/* Non-Root process */
active [nprocs-1] proctype NonRoot() {

MPI_Bcast(DATA, 0); /* Receive n */
MPI_Bcast(DATA, 0); /* Receive n*n */
MPI_Bcast(DATA, 0); /* Receive A */
MPI_Bcast(DATA, 0); /* Receive B */
/* Reduce the result to the root node */
do
:: i < n*n -> MPI_ReduceNR(0); i++
:: else -> i = 0; break
od

}

Computation Model
• MPI Communication – the same as in the deadlock model
• Expressions

- Representation
Symbolic expressions
are stored in byte arrays in
prefix notation
typedef Expn{

byte length;
byte array[maxExpnSize]

}
- Symbolic constants represent operators, e.g.
#define 255 PLUS

Example:

a2*a3 + a4*a5 in infix notation is equivalent to +*a2a3*a4a5 in prefix notation and

to in the model255 254 2 3 254 4 5

a9a22a00

A = B =

a11

a33

a77a66

a44

a88

a55

9 a1010 a1111

a12 a1313 a1412 14

a15 a1616 a171715

Computation Model

- Manipulation of Expressions
inline addTo(a, b){…} results in a = a+b
inline multBy(a, b){...} results in a = a*b

Example:

a b a+b* * +

32 5 =+ 4 *

32

*

4 5

254 2 3 255 254 2 3 254 4 5254 2 3

Computation Model

1. Symbolic computation is performed in parallel,
generating a matrix of expressions on the root
process

2. The root process does the symbolic computations
sequentially

3. The root process loops through the two resultant
structures checking that the two are the same via a
set of assertions

Scalability: Computation

• …Graphs

Optimization options in SPIN
-DCOLLAPSE

Matrixmul summary

• Model 1: Freedom from deadlock
Verified for 10X10 matrices with 4
processes or 4X4 matrices with 16
processes

• Model 2: Correctness of computation
Verified that the correct result is produced
for all possible executions for 3X3
matrices with 7 processes, …

Gauss-Jordan Elimination
Common application finding a matrix inverse

where I is the identity matrix, to obtain a matrix of the form

is then the inverse of A if such exists and [A I] is in the reduced row-
echelon form.

Gaussian-Jordan Elimination
Algorithm

Repeat for every row of the matrix:
• Locate the leftmost column that does not consist entirely of zeros.
• Interchange the top row with another row, if necessary, so that the

entry at the top of the column found in Step 1 in different from
zero.

• If the entry that is now at the top of the column found in Step 1 is
a, multiply the first row by 1/a in order to introduce a leading 1.

• Add suitable multiples of the top row to the rows above and
below so that all entries above and below the leading 1 become
zero.

Example:

0 10 -2 0 2 0 37 12 0 7

2 4 0 0-10 6 12 28 1 0 0 1

-5 6 -5 -1 0 0 1 22 4 0 0

Matrix Multiplication vs. Gauss-
Jordan Elimination

Why is Gauss-Jordan Elimination harder?
• There is need to introduce branching,

where conditions are functions of data
• The property is harder to express since

there is no closed formula of the answer,
again, consequence of data dependencies

Example of Symbolic Gauss-
Jordan Elimination on a 2X2 matrix

a11 11 = 0= 0Case 1:A = a1111 a12 a21 21 = 0= 012

a2121 a2222
a12 12 = 0= 0
a22 22 = 0= 0

0 0

0 0

Case 2: a11 11 = 0= 0 a11 11 = 0= 0Case 3:
a21 21 = 0= 0
a12 12 = 0= 0
a22 22 != 0!= 0

a21 21 = 0= 00 0

0 1
a12 12 != 0!= 0
a22 22 freefree

0 1

0 0

a11 11 = 0= 0
a21 21 != 0!= 0
a12 12 freefree
a22 22 freefree
a11 11 != 0!= 0
a2222-- aa2121*a*a1212/a/a1111
!= 0!= 0

Case 4: a11 11 != 0!= 0Case 5:
1 0 aa1212/a/a110a2222-- aa2121*a*a1212/a/a1111

!= 0!= 0
11

0 1 0 0

Approach to Verification
1. Construct both sequential and parallel models
2. Assume that the sequential model algorithm is correct
3. Show that for all input values given to the sequential

algorithm, the parallel version will arrive at the same
result.

Dealing with branching on data:
The sequential version executes the algorithm first,
exploring both possible branches on values of matrix
entries, that is

a11 11 ? 0? 0 PROMELA:

if

:: 1 -> a11 == 0; …

:: 1 -> a11 != 0; …

fi
a11 11 != 0!= 0a11 11 = 0= 0

Approach to Verification

Sequential model
1. accumulates a table of path conditions
2. passed on to the parallel code along with the

generated expression for the answer
Parallel model

1. uses the path conditions of the table generated
by sequential model and checks that the
symbolic expressions are the same as the ones
obtained sequentially

Gauss-Jordan Elimination Work in
Progress

Implemented so far:
• Sequential version in C
• Parallel version in C using MPI
• Sequential version of the SPIN/PROMELA model that

explores all possible executions and accumulates a table
of expressions of path conditions

Remaining to implement:
• Parallel version of the SPIN/PROMELA model which

takes the input data, table of path conditions, and
sequentially computed resultant matrix

The End

a b a+b* * +

32 5 =4 *

32

*

4 5

254 2 254 2 254 2254 2 3 255 3 33

Matrix Multiplication
Definition:
The product C(nxm) of two matrices A(nxp) and B(pxm), is

defined by

where j is summed over for all possible values of i and k.

Computation PROMELA Code

typedef Expression{ /* Symbolic expression in
prefix notation */
byte length;
byte array[entrySize]

}
typedef SArray{/*Original matrices. integer
symbols as entries*/
byte length;
byte array[matrixSizeSquared]

}
typedef matrix{ /* Resultant matrix of
expressions */

Expression array[matrixSize2]
}

/* Root process */
active proctype Root() {

…
/* D now has the result computed in parallel */
/* Compute the result locally, store in matrix C */

i = 0;
j = 0;
do
:: i < n ->
do
:: j < n ->
k = 0;

do
:: k < n ->

mult(A.array[i*n + k], B.array[k*n + j], tmp);
addTo(C.array[i*n + j], tmp);
k++

:: else -> k = 0; break
od; j++

::else -> j = 0; break
od; i++

:: else -> i = 0; break
od;
/* Verify that D and C are the same */
i = 0;
do
:: i < nElts ->
assert(D.array[i].length == C.array[i].length);
ii = 0;
do
:: ii < entrySize -> assert(D.array[i].array[ii] == C.array[i].array[ii]);

ii++
:: else ii = 0; break
od;
i++

:: else -> i = 0; break
od;

}

Typical Model Checking Architecture

Program (C, MPI) Property

abstraction

Program Model (PROMELA)

Model Checker (SPIN)

property verified counter example (execution trace) produced

	Using Model Checking with Symbolic Execution for the Verification of Data-Dependent Properties of MPI-Based Parallel Scientifi
	Problem
	Objective
	Approach
	Outline
	Overview of MPI
	Example MPI Program
	Example MPI Program
	Example MPI Program: Code
	Verification Process Overview
	Typical Model Checking Architecture
	Example Code
	Program Model: MPI
	Processes and Channels in PROMELA
	Modeling MPI Functions
	Modeling MPI Functions: Coordinator Process
	Coordinator Process: PROMELA Code
	Messages
	Modeling to Check Freedom From Deadlock
	Check for Freedom from Deadlock
	Modeling Computation
	Modeling Computation During Verification
	Validating the Results
	More Interesting Example: Gauss-Jordan Elimination
	More Interesting Example: Gauss-Jordan Elimination
	Gauss-Jordan Elimination: Example
	Gauss-Jordan Elimination: Example
	Gauss-Jordan Elimination: Example
	Gauss-Jordan Elimination: Example
	Gaussian-Jordan Elimination Algorithm
	Matrix Multiplication vs. Gauss-Jordan Elimination
	Example of Symbolic Gauss-Jordan Elimination on a 2X2 matrix
	Dealing with Data Dependency
	Experimental Evaluation
	Experimental Results: Scalability of the Computation
	Experimental Results: Optimization Options in SPIN
	Future Work
	Conclusions
	
	Gauss-Jordan Elimination: Procedure
	Gauss-Jordan Elimination: Procedure
	Gauss-Jordan Elimination: Procedure
	Gauss-Jordan Elimination: Procedure
	Background
	Matrix Multiplication
	Matrixmul.c
	Matrixmul.c
	Properties
	Modeling MPI Functions
	Coordinator Process
	Abstraction of C Code
	Deadlock Model
	Deadlock Model
	Deadlock Model
	Computation Model
	Computation Model
	Computation Model
	Scalability: Computation
	Optimization options in SPIN
	Matrixmul summary
	Gauss-Jordan Elimination
	Gaussian-Jordan Elimination Algorithm
	Matrix Multiplication vs. Gauss-Jordan Elimination
	Example of Symbolic Gauss-Jordan Elimination on a 2X2 matrix
	Approach to Verification
	Approach to Verification
	Gauss-Jordan Elimination Work in Progress
	The End
	Matrix Multiplication
	Computation PROMELA Code
	

