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Problem

• It is hard to create “correct” parallel programs
– Concurrency adds complexity and introduces 

problems such as deadlock
– Non-determinacy makes testing even less effective

• Model checking techniques have been applied 
to concurrent systems
– But focus on patterns of communication instead of 

correctness of the computation
– Limited experience with MPI-based programs 



Objective

• Verification of MPI-based programs using 
model checking
– Freedom from Deadlock
– Computational correctness



Approach
• Use a model checker to explore all possible 

executions
• Deadlock detection

– Modeling MPI functions
– Abstracting away unnecessary data

• Computational correctness
– Extend the model checker to create symbolic 

representations of the executions
– Compare the sequential program’s symbolic 

representation of the result to the parallel program’s 
representation



Outline

• Background on MPI
• Verification for freedom from deadlock
• Verification using symbolic execution
• Experimental results



Overview of MPI

• Origin: result of work of the Committee formed at 
the Supercomputing ’92 conference 

• Significance: widely used in scientific 
computation

• Communication: message passing in a 
distributed-memory environment

• Types of operations supported:
– Blocking/non-blocking
– Collective



Example MPI Program
Multiplication of two 3X3 matrices A and B with two processes

AProc 1MPI_BcastProc 0

B
A

BMPI_Bcast
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B B
C C= =

X X X0 00

X X X00 0

0XX X00



Example MPI Program
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B B
C C= =
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Example MPI Program: Code
/* Broadcast entries of A and B */
MPI_Bcast(A, nElts, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast(B, nElts, MPI_DOUBLE, 0, MPI_COMM_WORLD);
/* Computation */
for (i = 0; i<n; i++)

for (j=0; j<n; j++) {
C[(i*n)+j]=0;
if (((i*n)+j)%size==rank) for (k = 0; k < n; k++) C[(i*n)+j] += 

(double)A[(i*n)+k] * (double)B[(k*n)+j];
}

}
/* Reduce entries in C to the corresponding entries D on 

the root process*/
for (i = 0; i<nElts; i++) 

MPI_Reduce(&C[i], &D[i], 1, MPI_DOUBLE, MPI_MAX, 0, 
MPI_COMM_WORLD);

double *A, *B;     //two initial matrices
double *C;          //intermediate result
double *D;          //final result, D = AB
/* Read matrix dimensions from file*/
if(rank == 0){

fscanf(inFile, "%d\n", &n);
nElts = n*n;

}
/* Broadcast the dimension and the total number of 

elements in each matrix*/
MPI_Bcast(&nElts, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
/* Allocate memory for A, B, and C*/
A, B, C = (double *) malloc(nElts * sizeof(double));
/* Root process allocates memory for D and reads 

entries of A and B from file */
if (rank==0){

D = (double *) malloc(nElts * sizeof(double));
for(i=0; i<nElts; i++) {

if (i%n==0) fscanf(inFile, "\n");
fscanf(inFile, "%lf", &(A, B[i]));

}
}



Verification Process Overview

• Model checking
• Modeling the program

– MPI functions
– Deadlock free
– Computation correctness

• Carrying out the verification



Typical Model Checking 
Architecture

Program 
(C, MPI)

Program Model 
(PROMELA)

Model Checker 
(SPIN)

property verified counter example 

(execution trace) 

produced

•Builds a graph representing 
all   possible states of the 
system
•State explosion problem: 
number of states is 
exponential in the number of 
concurrent processes
•Hence necessary to create 
an abstracted version of the 
program to eliminate 
unnecessary details wrt the 
property being proved

• Usually represented in 
temporal logic or sometimes 
as an automaton

Property

abstraction



Example Code

• Matrix Multiplication -
written by my classmates and myself as one of the assignments 
for the Programming Languages Course in Computer Science 
(CS331) at the University of Alaska, Anchorage

• Gauss-Jordan Elimination –
written at the University of Massachusetts, Amherst under the 
guidance of Dr. Stephen Siegel

Testing was performed on both of these 
implementations and based on the results the code 
was assumed to be correct.



Program Model: MPI

Key Abstractions:
• Processes and communication channels
• Collective MPI functions
• Messages



Processes and Channels in 
PROMELA

• Definition of Processes:

active proc Root{…}
active proc [numprocs - 1] NonRoot{…} 
active proc Coordinator{…}

• Definition of Channels:
/*Data channels from root to non-root nodes*/
chan chan_from_root[nprocs]

/*Data Channels from non-root nodes to root */ 
chan chan_to_root[nprocs]

/*Collective communication channels from nodes to 
Coordinator */
chan chan_c[nprocs]

Coordinator

Root

NonRoot[0]

NonRoot[nprocs -1]

…



Modeling MPI Functions
Matrix multiplication example utilizes two MPI functions, 
both of which are collective:

• MPI_Bcast(void *buffer, int count, 
MPI_Datatype datatype, int root, MPI_Comm comm)
Broadcasts a message from the process with rank root to all 
processes of the group

• MPI_Reduce(void *sendbuf, void *recvbuf, int
count, MPI_Datatype datatype, MPI_Op op, int
root, MPI_Comm comm)
Combines the elements provided in the input buffer of each 
process in the group, using the operation op, and returns the 
combined value in the output buffer of the process with rank root

Based on the description in Siegel and Avrunin, 
introduce another process for coordinating collective 
operations…



Modeling MPI Functions: 
Coordinator Process

The Coordinator process is used to model the collective MPI functions MPI_Bcast
and MPI_Reduce: 

MPI_Bcast MPI_Reduce
BCAST REDUCE

Proc 0 Proc 0
Proc 1 Proc 1 CoordinatorCoordinator… …… …
Proc n Proc n

…wait for all processes to receive data from root… …wait for the root process to collect data from all procs…

DONE DONE
Proc 0 Proc 0

CoordinatorProc 1Proc 1 Coordinator
… ……

Proc n Proc n



Coordinator Process: PROMELA 
Code

active proctype Coordinator() {
/* Receive initial messages from all processes and confirm that all nodes agree on the type 

of communication in progress*/ 
do
:: chan_c[0]?im;
i = 1;
do
:: i < nprocs -> chan_c[i]?cm; assert(im == cm);  i++
:: else -> i = 0; break
od;
if
:: im == BCAST ->
/* Interpret a broadcast message, receive a DONE message from every node */
do
:: i < nprocs -> chan_c[i]?cm; assert (cm == DONE); i++
:: else -> i = 0; break
od

:: im == REDUCE ->
/* Interpret a reduce message, receive a DONE message from the root process */

…
fi

od
}



Messages
Messages between the coordinator and processes 
participating in the computation are abstracted in the 
following manner:
mtype = {BCAST, REDUCE, DONE},
where
– BCAST is a message sent to the Coordinator process by every 

process participating in the computation at the beginning of all
the MPI_Bcast collective routines

– REDUCE is sent to the Coordinator process by every process 
participating in the computation at the beginning of all the 
MPI_Reduce collective routines

– DONE is sent to the Coordinator process by processes 
participating in the computation upon completion of every 
collective operation as expected by the Coordinator process



Modeling to Check Freedom From 
Deadlock

• Abstractions to remove details about data
mtype = {BCAST, REDUCE, DONE, DATA}

Example:
MPI_Bcast (0, DATA);
- process with rank 0 broadcasting an abstracted data unit to all
process participating in the computation 

• Synchronization issues
channel!message
if
:: 1 -> empty(channel)
:: 1 -> skip
fi



Check for Freedom from Deadlock

• Apply SPIN
• No need for special property definition
• Scalability

– raw
– utilizing optimizations of SPIN results in 
extended capabilities



Modeling Computation
• MPI Communication – the same as in the deadlock model

• Add support for symbolic expressions in PROMELA
– Symbolic expressions 

are stored in byte arrays in 
prefix notation
typedef Expn{
byte length;
byte array[maxExpnSize]

}

Example:

a2*a3 + a4*a5 in infix notation is equivalent to +*a2a3*a4a5 in prefix notation

and to    in the model

a22a00

A = B =

+ * 2 3 * 4 5

a11

a33

a77a66

a44

a88

a55

b99 b1010 b1111

b1313b1212 b1414

b1616 b1717b1515

*

Actually, integer constants represent operators, e.g. #define 255 PLUS*



Modeling Computation During 
Verification 

- Add functions to manipulate symbolic 
expressions

inline addTo(a, b){…} results in a = a + b
inline multBy(a, b){...} results in a = a * b

Example:
a b a+b* * +

32 5 =+ 4 *

32

*

4 5

* 2 3 + * 2 3 * 4 5* 2 3



Validating the Results
Key Idea:
1. Implement both the sequential and parallel versions of the algorithm 
2. Apply SPIN and compare the symbolic expressions produced 
3. Conclude that the result of the parallel computations is correct if it 

matches the output of the sequential code.

Matrix multiplication example:
1. Symbolic computation is performed in parallel, generating a matrix of 

expressions on the root process
2. The root process does the symbolic computations sequentially
3. The root process loops through the two resultant structures checking that 

the two are the same via a set of assertions

sequential parallel

results

compare



More Interesting Example: 
Gauss-Jordan Elimination

Common application finding a matrix inverse

where I  is the identity matrix, to obtain a matrix of the form 

is then the inverse of A if such exists and [A 
I] is in the reduced row-echelon form.



More Interesting Example: 
Gauss-Jordan Elimination

Definition: reduced row-echelon form
Properties of a matrix in a reduced row-echelon form:
1. Each row contains only zeros until the first non-zero element, 

which must be a 1
2. As the rows are followed from top to bottom, the first nonzero 

number occurs further to the right than in the previous row
3. The entries above and below the first 1 in each row must be all 0

Performing the Gauss-Jordan Elimination algorithm on any 
matrix results in the equivalent reduced row-echelon form of 
that matrix  



Gauss-Jordan Elimination: 
Example

Step 1. Locate the leftmost column (vertical line) 
that does not consist entirely of zeros

0 0 -2 0 7 12

2 4 -10 6 12 28

-5 6 -5 -12 4

Leftmost nonzero column



Gauss-Jordan Elimination: 
Example

Step 2. Interchange the top row with another row, 
if necessary, so that the entry at the top column 
found in Step 1 is different from zero

0 0 -2 0 7 12 Interchange the first and 
second rows

2 4 -10 6 12 28

-5 6 -5 -12 4



Gauss-Jordan Elimination: 
Example

Step 3. If the entry that is now at the top of the 
column found in Step 1 is a, multiply the first row 
by 1/a in order to introduce a leading 1

2 41 2 X 1/2-10-5 63 126 2814

0 0 -2 0 7 12

-5 6 -5 -12 4



Gauss-Jordan Elimination: 
Example

Step 4. Add suitable multiples of the top row to 
the rows above and below so that all entries 
below leading 1 become zeros

1 2 -5 3 6 14 2 times the first row was added 
to the third row

0 0 -2 0 7 12

2 4 -5 6 -5 -10 0 5 0 -17 -29



Gaussian-Jordan Elimination 
Algorithm

The above procedure is repeated for 
every row of the matrix to produce the 
reduced row-echelon form of the 
example matrix:

0 0 -2 0

2

2

7 12

4

4

-10

-5

6

6

12

-5

28

-1

1 2 0 3

0

0

0 7

0

0

1

0

0

0

0

1

1

2

Gauss-
Jordan 
Elimination

Initial matrix: Reduced Row-Echelon 
Form of the initial matrix:



Matrix Multiplication vs. Gauss-
Jordan Elimination

Why is it harder to verify the correctness of 
the Gauss-Jordan Elimination?

• Need to introduce branching when 
conditions are functions of data

• The property is harder to express since 
there is no closed formula of the answer, 
again, consequence of data dependencies



Example of Symbolic Gauss-
Jordan Elimination on a 2X2 matrix

a11 11 = 0= 0Case 1:A = a1111 a12 a21 21 = 0= 012

a2121 a2222
a12 12 = 0= 0
a22 22 = 0= 0

0 0

0 0

Case 2: a11 11 = 0= 0 Case 3: a11 11 = 0= 0
a21 21 = 0= 0
a12 12 != 0!= 0
a22 22 freefree

0 1

0 0
a11 11 != 0!= 0
a2222-- aa2121*a*a1212/a/a1111
!= 0!= 0

a21 21 = 0= 0
a12 12 = 0= 0
a22 22 != 0!= 0

0 0

0 1

a11 11 = 0= 0
a21 21 != 0!= 0
a12 12 freefree
a22 22 freefree
a11 11 != 0!= 0
a2222-- aa2121*a*a1212/a/a1111
!= 0!= 0

Case 4:
1 0

0 1



Dealing with Data Dependency
a11 11 ? 0? 0Exploring Both Branches:

a11 11 != 0!= 0a11 11 = 0= 0

PROMELA Code:
if

:: 1 -> /* Assume (a11 == 0) */

/* Add expression (a11 == 0) to the path conditions table */
…

:: 1 -> /* Assume (a11 != 0) */
/* Add expression (a11 != 0) to the path conditions table */
…

fi



Experimental Evaluation
• Matrix Multiplication Example

Matrix dimensions: nxn, where n = 2, 3, …, 7
Number of processes: numprocs = 1, …, 10

• Gauss-Jordan Elimination
– Sequential

Matrix sizes: mxn, where m, n = 2, 3, 4
– Parallel 

Implementation and experimental runs in progress

Measured memory usage
Main issue is the size of the State Vector; 
some runs use 85% of the entire machine memory

Distinguishing feature
the common problem of state explosion of 
overshadowed by issues associated with the size of the State 

Vector



Experimental Results: Scalability of 
the Computation

• …Graphs



Experimental Results: Optimization 
Options in SPIN

-DCOLLAPSE



Future Work

• Improvement of PROMELA models
– Data structures
– Incorporating C code
– Theorem proving packages

• Using a different model checker, e.g. 
MOVer (MPI-Optimized Verifier)

• Exploring other non-trivial computational 
examples



Conclusions
• Deadlock

– demonstrated applicability of abstractions
– scaled somewhat reasonably – ability to do non-trivial sizes of 

matrices
• Computational correctness

- sequential model capable of handling non-trivial sizes 
of matrices
- using SPIN to create symbolic expressions and 
comparing these expressions for the parallel and 
sequential versions of the algorithm

• Initial experimental results are
promising!





Gauss-Jordan Elimination: 
Procedure

Step 1. Locate the leftmost column (vertical line) 
that does not consist entirely of zeros

0 0 -2 0 7 12

2 4 -10 6 12 28

-5 6 -5 -12 4

Leftmost nonzero column



Gauss-Jordan Elimination: 
Procedure

Step 2. Interchange the top row with another row, 
if necessary, so that the entry at the top column 
found in Step 1 is different from zero

0 0 -2 0 7 12 Interchange the first and 
second rows

2 4 -10 6 12 28

-5 6 -5 -12 4



Gauss-Jordan Elimination: 
Procedure

Step 3. If the entry that is now at the top of the 
column found in Step 1 is a, multiply the first row 
by 1/a in order to introduce a leading 1

2 41 2 X 1/2-10-5 63 126 2814

0 0 -2 0 7 12

-5 6 -5 -12 4



Gauss-Jordan Elimination: 
Procedure

Step 4. Add suitable multiples of the top row to 
the rows above and below so that all entries 
below leading 1 become zeros

1 2 -5 3 6 14 2 times the first row was added 
to the third row

0 0 -2 0 7 12

2 4 -5 6 -5 -10 0 5 0 -17 -29



Background
• Distributed computing
MPI, the Message-Passing Interface (C bindings)
• Symbolic execution of programs with non-trivial 

arithmetic
– Matrix multiplication
Multiplication of two square matrices;
– Gauss-Jordan elimination
Computing a reduced row-echelon form of any nxm

matrix on n processes
• Model checking
SPIN, Simple PROMELA INterpreter



Matrix Multiplication
Implementation in C using MPI:
• Written as an assignment for CS331 Programming Languages, 

University of Alaska Anchorage
• Structure and algorithm:

– Files:
matrices.txt – contains matrix size and values of all entries in 
initial matrices
matrixmul.c – code;

– Algorithm:
1. Root process reads the dimensions (n) of the input matrices (A, 

B) and values of their respective entries
2. Root process broadcasts n, A, and B to all processes
3. Each process computes an entry of the resultant matrix 

represented by a new matrix C if its rank is equal to the remainder 
of the  index of that entry (in row major order)

4. The final result of the computation is accumulated in a matrix D
on the root process by reducing the maximum of the 
corresponding entries in C from all the processes



Matrixmul.c
double *A, *B;     //two initial matrices
double *C;          //intermediate result
double *D;          //final result, D = AB
/* Read matrix dimensions from file*/
if(rank == 0){

fscanf(inFile, "%d\n", &n);
nElts = n*n;

}
/* Broadcast the dimension and the total number of elements in each matrix*/
MPI_Bcast(&nElts, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
/* Allocate memory for A, B, and C*/
A, B, C = (double *) malloc(nElts * sizeof(double));
/* Root process allocates memory for D and reads entries of A and B from file */
if (rank==0){

D = (double *) malloc(nElts * sizeof(double));
for(i=0; i<nElts; i++) {

if (i%n==0) fscanf(inFile, "\n");
fscanf(inFile, "%lf", &(A, B[i]));

}
}



Matrixmul.c
/* Broadcast entries of A and B */
MPI_Bcast(A, nElts, MPI_DOUBLE, 0, 

MPI_COMM_WORLD);
MPI_Bcast(B, nElts, MPI_DOUBLE, 0, 

MPI_COMM_WORLD);
/* Computation */
for (i = 0; i<n; i++)
for (j=0; j<n; j++) {
C[(i*n)+j]=0;
if (((i*n)+j)%size==rank) for (k = 0; k < n; 
k++) C[(i*n)+j] += (double)A[(i*n)+k] * 
(double)B[(k*n)+j];

}
}
/* Reduce entries in C to the 

corresponding entries D on the root 
process*/

for (i = 0; i<nElts; i++) 
MPI_Reduce(&C[i], &D[i], 1, MPI_DOUBLE, 

MPI_MAX, 0, MPI_COMM_WORLD);

C(0) = X 0 0 C(1)= …

X C(2)= …0 0

C(3)= …X0 0

D = 0 1 2

3 0 1

2 3 0



Properties

1. Freedom from deadlock

2. Correctness of computations



Modeling MPI Functions
matrixmul.c utilizes two MPI functions, both of which 
are collective:

• MPI_Bcast(void *buffer, int count, MPI_Datatype
datatype, int root, MPI_Comm comm)
Broadcasts a message from the process with rank root to all 
processes of the group, itself included

• MPI_Reduce(void *sendbuf, void * recvbuf, int
count, MPI_Datatype datatype, MPI_Op op, int
root, MPI_Comm comm)
Combines the elements provided in the input buffer of each 
process in the group, using the operation op, and returns the 
combined value in the output buffer of the process with rank root

Based on the description in Siegel and Avrunin, 
Modeling MPI Programs for Verification, introduce 
another process for coordinating collective operations…



Coordinator Process
active proctype Coordinator() {

/* Receive initial messages from all processes and confirm that all nodes agree on the type 
of communication in progress*/ 
do
:: chan_c[0]?im;
i = 1;
do
:: i < nprocs -> chan_c[i]?cm; assert(im == cm);  i++
:: else -> i = 0; break
od;
if
:: im == BCAST ->
/* Interpret a broadcast message, receive a DONE message from every non-root node */
do
:: i < nprocs -> chan_c[i]?cm; assert (cm == DONE); i++
:: else -> i = 0; break
od

:: im == REDUCE ->
/* Interpret a reduce message, receive a DONE message from the root process */

…
fi

od
}



Abstraction of C Code
Processes in PROMELA:
active proc Root{…}
active proc [nprocs - 1] NonRoot{…} 
active proc Coordinator{…}

/*Data channels from root to non-root nodes*/
chan chan_from_root[nprocs]
/*Data Channels from non-root nodes to root */ 
chan chan_to_root[nprocs]
/*Collective communication channels from nodes to 
Coordinator */
chan chan_c[nprocs]

Coordinator

NonRoot[0]

Root…

NonRoot[nprocs -1]



Deadlock Model

• Message abstraction

mtype = {BCAST, REDUCE, DONE, DATA}

• Modeling possible need for synchronization of 
every send operation by implementing a non-
deterministic choice
if 

::1 -> empty(channel) 
::1 
fi



Deadlock Model
/* Reduce routine executed by the root process*/
inline MPI_ReduceR(root){

chan_c[0]!REDUCE; /* Initiate reduce */
…
do
:: i < nprocs ->
if 
:: i != root ->
/* Receive data from non-root procs */
chan_to_root[i]?DATA

:: else ->
fi;

…
od;
chan_c[_pid]!DONE; /* Notify coordinator upon 

completion */
}

/* Reduce routine executed by a non-root 
process*/
inline MPI_ReduceNR(root){

chan_c[_pid]!REDUCE; /* Initiate reduce */
chan_to_root[_pid]!DATA; /* Send data to root */
chan_c[_pid]!DONE; /* Notify coordinator upon 

completion */
}

inline MPI_Bcast(datum, root){
/* Initiate broadcast */
chan_c[_pid]!BCAST;
if  
:: _pid == root -> 
/* Send data to all procs */
bcastData(datum, root) 

:: else -> 
/* Receive data from root */
chan_from_root[_pid]?datum

fi;
/* Notify coordinator upon completion*/
chan_c[_pid]!DONE;
/* Account for a possibility of a blocking 

send */
if
::1 -> empty(chan_c[_pid])
::1 ->
fi

}



Deadlock Model
/* Root process */
active proctype Root() {

MPI_Bcast(DATA, 0); /* Broadcast matrix dimension n */
MPI_Bcast(DATA, 0); /* Broadcast n*n */        
MPI_Bcast(DATA, 0); /* Broadcast A */
MPI_Bcast(DATA, 0); /* Broadcast B */

/* Reduce the result */
do
:: i < n*n -> MPI_ReduceR(0); i++
:: else -> i = 0; break
od

}

/* Non-Root process */
active [nprocs-1] proctype NonRoot() {

MPI_Bcast(DATA, 0); /* Receive n */
MPI_Bcast(DATA, 0); /* Receive n*n */
MPI_Bcast(DATA, 0); /* Receive A */
MPI_Bcast(DATA, 0); /* Receive B */
/* Reduce the result to the root node */
do
:: i < n*n -> MPI_ReduceNR(0); i++
:: else -> i = 0; break
od

}



Computation Model
• MPI Communication – the same as in the deadlock model
• Expressions

- Representation
Symbolic expressions 
are stored in byte arrays in 
prefix notation
typedef Expn{

byte length;
byte array[maxExpnSize]

}
- Symbolic constants represent operators, e.g. 
#define 255 PLUS

Example:

a2*a3 + a4*a5 in infix notation is equivalent to +*a2a3*a4a5 in prefix notation and 

to in the model255 254 2 3 254 4 5

a9a22a00

A = B =

a11

a33

a77a66

a44

a88

a55

9 a1010 a1111

a12 a1313 a1412 14

a15 a1616 a171715



Computation Model

- Manipulation of Expressions
inline addTo(a, b){…} results in a = a+b
inline multBy(a, b){...} results in a = a*b

Example:

a b a+b* * +

32 5 =+ 4 *

32

*

4 5

254 2 3 255 254 2 3 254 4 5254 2 3



Computation Model

1. Symbolic computation is performed in parallel, 
generating a matrix of expressions on the root 
process

2. The root process does the symbolic computations 
sequentially

3. The root process loops through the two resultant 
structures checking that the two are the same via a 
set of assertions



Scalability: Computation

• …Graphs



Optimization options in SPIN
-DCOLLAPSE



Matrixmul summary

• Model 1: Freedom from deadlock 
Verified for 10X10 matrices with 4 
processes or 4X4 matrices with 16 
processes

• Model 2: Correctness of computation 
Verified that the correct result is produced 
for all possible executions for 3X3 
matrices with 7 processes, …



Gauss-Jordan Elimination
Common application finding a matrix inverse

where I  is the identity matrix, to obtain a matrix of the form 

is then the inverse of A if such exists and [A I] is in the reduced row-
echelon form.



Gaussian-Jordan Elimination 
Algorithm

Repeat for every row of the matrix:
• Locate the leftmost column that does not consist entirely of zeros.
• Interchange the top row with another row, if necessary, so that the 

entry at the top of the column found in Step 1 in different from
zero.

• If the entry that is now at the top of the column found in Step 1 is 
a, multiply the first row by 1/a in order to introduce a leading 1.

• Add suitable multiples of the top row to the rows above and
below so that all entries above and below the leading 1 become 
zero. 

Example:

0 10 -2 0 2 0 37 12 0 7

2 4 0 0-10 6 12 28 1 0 0 1

-5 6 -5 -1 0 0 1 22 4 0 0



Matrix Multiplication vs. Gauss-
Jordan Elimination

Why is Gauss-Jordan Elimination harder?
• There is need to introduce branching, 

where conditions are functions of data
• The property is harder to express since 

there is no closed formula of the answer, 
again, consequence of data dependencies



Example of Symbolic Gauss-
Jordan Elimination on a 2X2 matrix

a11 11 = 0= 0Case 1:A = a1111 a12 a21 21 = 0= 012

a2121 a2222
a12 12 = 0= 0
a22 22 = 0= 0

0 0

0 0

Case 2: a11 11 = 0= 0 a11 11 = 0= 0Case 3:
a21 21 = 0= 0
a12 12 = 0= 0
a22 22 != 0!= 0

a21 21 = 0= 00 0

0 1
a12 12 != 0!= 0
a22 22 freefree

0 1

0 0

a11 11 = 0= 0
a21 21 != 0!= 0
a12 12 freefree
a22 22 freefree
a11 11 != 0!= 0
a2222-- aa2121*a*a1212/a/a1111
!= 0!= 0

Case 4: a11 11 != 0!= 0Case 5:
1 0 aa1212/a/a110a2222-- aa2121*a*a1212/a/a1111

!= 0!= 0
11

0 1 0 0



Approach to Verification
1. Construct both sequential and parallel models
2. Assume that the sequential model algorithm is correct
3. Show that for all input values given to the sequential 

algorithm, the parallel version will arrive at the same 
result.

Dealing with branching on data:
The sequential version executes the algorithm first, 
exploring both possible branches on values of matrix 
entries, that is

a11 11 ? 0? 0 PROMELA:

if

:: 1 -> a11 == 0; …

:: 1 -> a11 != 0; …

fi
a11 11 != 0!= 0a11 11 = 0= 0



Approach to Verification

Sequential model 
1. accumulates a table of path conditions 
2. passed on to the parallel code along with the 

generated expression for the answer
Parallel model

1. uses the path conditions of the table generated 
by sequential model and checks that the 
symbolic expressions are the same as the ones 
obtained sequentially



Gauss-Jordan Elimination Work in 
Progress

Implemented so far:
• Sequential version in C
• Parallel version in C using MPI
• Sequential version of the SPIN/PROMELA model that 

explores all possible executions and accumulates a table 
of expressions of path conditions

Remaining to implement:
• Parallel version of the SPIN/PROMELA model which 

takes the input data, table of path conditions, and 
sequentially computed resultant matrix



The End



a b a+b* * +

32 5 =4 *

32

*

4 5

254 2 254 2 254 2254 2 3 255 3 33



Matrix Multiplication
Definition:
The product C(nxm) of two matrices A(nxp) and B(pxm), is 

defined by 

where j is summed over for all possible values of i and k.



Computation PROMELA Code

typedef Expression{ /* Symbolic expression in 
prefix notation */
byte length;
byte array[entrySize]

}
typedef SArray{/*Original matrices. integer 
symbols as entries*/
byte length;
byte array[matrixSizeSquared]

}
typedef matrix{ /* Resultant matrix of 
expressions */

Expression array[matrixSize2]
}

/* Root process */
active proctype Root() {

…
/* D now has the result computed in parallel */
/* Compute the result locally, store in matrix C */

i = 0;
j = 0;
do
:: i < n ->
do
:: j < n ->
k = 0;

do
:: k < n -> 



mult(A.array[i*n + k], B.array[k*n + j], tmp);
addTo(C.array[i*n + j], tmp); 
k++

:: else -> k = 0; break
od; j++

::else -> j = 0; break
od; i++

:: else -> i = 0; break
od;
/* Verify that D and C are the same */
i = 0;
do
:: i < nElts ->
assert(D.array[i].length == C.array[i].length);
ii = 0;
do
:: ii < entrySize -> assert(D.array[i].array[ii] == C.array[i].array[ii]);

ii++
:: else ii = 0; break
od;
i++

:: else -> i = 0; break
od;

}



Typical Model Checking Architecture

Program (C, MPI) Property

abstraction

Program Model (PROMELA)

Model Checker (SPIN)

property verified counter example (execution trace) produced
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