
Using Model Checking and Symbolic Execution for the Verification of
Data-Dependent Properties of MPI-Based Parallel Scientific Software
CRA Distributed Mentor Project Summer 2004

Mentee Anastasia Mironova, University of Alaska Anchorage

Mentors Lori A. Clarke, Stephen Siegel, George Avrunin; Laboratory for Advanced Software Engineering Research, University of Massachusetts, Amherst

It is hard to write “correct” parallel programs

Model checking techniques have been applied to concurrent systems

Example 1: Multiplication of Matrices

Example 2: Gauss-Jordan Elimination

We modify the verification procedure of Example 1 to match not only the
symbolic expressions but also the set of path conditions.

Conclusions

Computational correctness

Future Work

Use a model checker to explore all possible executions

Problem Description Approach

Conclusions and Future WorkCase Studies

Verification of computational correctness

Non-determinacy makes testing even less effective

But focus on patterns of communication instead of correctness of
the computation
Limited experience with MPI-based programs

Modeling MPI functions
Abstracting away unnecessary data

Extending the model checker to create symbolic
representations of the executions
Comparing the sequential program’s symbolic
representation of the result to the parallel program’s
representation

Verification procedure
1. Symbolic computation is performed in parallel, generating a

matrix of expressions on the root process
2. The root process does the symbolic computations sequentially
3. The root process loops through the two resultant structures

checking that they are the exactly the same via a set of assertions
description

Concurrency adds complexity and introduces problems such as
deadlock

Verification of freedom from deadlock

Need to introduce branching where conditions are functions of data
The property is harder to express since there is no closed formula
of the answer, again, consequence of data dependencies

Deadlock
Demonstrated applicability of abstractions
Demonstrated scalability: ability to handle non-trivial sizes of
matrices

Sequential model capable of handling non-trivial sizes of matrices
Used the SPIN Model Checker to create symbolic expressions and
compare these expressions for the parallel and sequential versions
of the algorithm

Improving the PROMELA models
Optimizing data structures
Incorporating C code
Employing theorem proving packages

Using a different model checker, e.g. MOVer (MPI-Optimized Verifier)
Exploring other non-trivial computational examples

This case presents a greater challenge

sequential

compare

generate
symbolic

expressions parallel

