
Using Model Checking with Symbolic Execution for the Verification of Data-
Dependent Properties of MPI-Based Parallel Scientific Software

Mentee: Anastasia Mironova
University of Alaska Anchorage, Anchorage, Alaska

anastasia.mironova@gmail.com
Mentors: Lori A. Clarke, Stephen Siegel, George Avrunin
Laboratory for Advanced Software Engineering Research

University of Massachusetts at Amherst

ABSTRACT

The objective of this project was to investigate the application
of model checking to the formal verification of properties of
MPI-based parallel scientific programs. By extending a model
checker with symbolic execution capabilities, we were able to
verify that a parallel version of the system computed the same
values as a sequential version. We experimentally evaluated
this approach for two small numerical programs. Although
more work needs to be done, this project served as a proof of
concept.

1. INTRODUCTION

Problems in the field of scientific computation often require
extensive parallelization of the involved algorithms in order to
execute in reasonable time. Hence, the majority of code for
solving such problems is written for parallel architectures.
Programming for such architectures is challenging, making it
even harder to write “correct” code.
Programs written for parallel architectures are not only hard to
create, they are significantly harder to test. Parallelism adds
complexity and introduces problems, such as deadlock and race
conditions. Problems like these can be extremely difficult to
detect. The non-deterministic decisions made by the runtime
system can make testing even less effective as it can be difficult
to reproduce the same sequence of execution. Hence, it becomes
important to have other means for testing and debugging parallel
code.
In this work we are investigating the application of model
checking to code written for parallel architectures using a high-
level language with a library of message passing routines. In
particular, we are considering two common non-trivial
mathematical routines for computing the product of two square
matrices and Gauss-Jordan elimination. The original code is
written in C using the popular Message-Passing Interface (MPI)
library. The two specific properties we are concerned with here
are freedom from deadlock and computational correctness and the
particular model checker we are using to carry out the verification
step is the SPIN Model Checker.
This work is intended to contribute to the current knowledge in
this area by expanding on several aspects. Model checking
techniques have been applied to concurrent systems in the past
but their focus has been primarily on patterns of communication
rather than the correctness of the computation. Past studies exhibit
limited experience with MPI and, hence, this work is a
contribution in this direction as well.

2. APPROACH

The choice of using model checking directs us to using the
following approach for carrying out the formal verification.
We construct abstract models of the original C code and use a
model checker to explore all possible executions. A separate
model is built for each particular property in order to maximize
the degree of optimization. The models are carefully constructed
to accurately represent all components of the original code
relevant to the specific property being checked and abstract away
most of the irrelevant details.
Once the models are constructed to represent the relevant
components of the original code, we define a set of conditions
that describe the property we are checking and make
modifications to the models to contain the corresponding checks
for these conditions. For checking freedom from deadlock there is
no need to explicitly include the description of this property in the
code because this check is performed automatically in SPIN. The
situation is, however, less trivial for specifying the correctness of
the computation property.
The property of computational correctness is hard to express in
general, so we must first define what it is that we believe to be
correct. Since in this work we are concerned with correctness of
the parallel code, we base our definition of computational
correctness on the assumption that the sequential version of the
same algorithm is correct. Hence, in order to check correctness of
computation of the parallel algorithm we must verify that the
parallel version of the algorithm is equivalent to sequential, that is
for every possible execution and for all possible values of the
input data both versions of the algorithm produce equivalent
symbolic expressions. As it turns out, the specific set of assertions
that must be evaluated by the model checker to verify this
property varies depending on the computational example.

3. CASE STUDY

In this work the two examples of non-trivial mathematical
computation we are considering are multiplication of two square
matrices and Gauss-Jordan Elimination. For the case of
multiplication of matrices we construct two models, one specific
to verifying freedom from deadlock and the second for checking
the correctness of computed expressions. For the second example
Gauss-Jordan elimination, we restrict our attention to only the
property of computational correctness. The following two
sections describe these case studies in detail.

3.1 MULTIPLICATION OF MATRICES
This example was the first one considered during the course of the
project and the original C code was adopted from an assignment
written for an undergraduate course in programming languages at
the University of Alaska Anchorage. This code performs
multiplication of two square matrices in parallel. For this example
we constructed two models, one for checking freedom from
deadlock and the other one for verifying correctness of
computation. We will now discuss the specificities of abstractions
and verification procedures for each model.
For verification of freedom from deadlock the most relevant
component of the original code that we model is the MPI
functions so we could abstract away much of the detail about the
input data and computation. The verification step in this case is
performed by simply running the model checker on the
constructed model in verification mode. SPIN is set to
automatically check for deadlock by default.
For verification of computational correctness the key modeling
decision is the use of symbolic expressions that we construct in
order to represent numerical data and mathematical expressions
involved in the process of computation. We extend the model
checker to create these symbolic representations of the executions
and carry out any necessary manipulations.
Verifying the computational correctness property in this model is
slightly more complicated. The following list outlines the
sequence of steps we perform in order to carry out the formal
verification:

1. Symbolic Computation is performed in parallel,
generating a matrix of expressions on the root process

2. The root process does the symbolic computations
sequentially

3. The root process loops through the two resultant
structures checking that they are exactly the same via a
set of assertions description.

The assertion statements in SPIN are also checked automatically
when this model checker is run in the verification mode, and
hence that is how we carry out the verification step here.

3.2 GAUSS-JORDAN ELIMINATION
The Gauss-Jordan Elimination algorithm defines a sequence of
elementary row operations to reduce any matrix to its reduced
row echelon form. Gauss-Jordan Elimination is a very standard
computational routine and for this example we are only verifying
the property of computational correctness.
 As it turns out, this is a much harder problem compared to the
previous example of multiplication of matrices. There are two
main differences. First, to accurately model the program to take
into account all possible values of the input data, we must model
branching, where conditions are functions of the input data.
Second, the property of computational correctness in this case is
harder to express since there is no closed formula of the answer,
which is, again, a consequence of conditional data dependencies.
To handle the above problems we modify the verification
procedure defined earlier for the matrix multiplication example in
the following manner:

1. Symbolic computation is performed sequentially,
generating a matrix of expressions on the root process

as well as maintaining a set of path conditions that has
been followed during the execution

2. The computation is performed in parallel following the
set of path conditions generated at the preceding step

3. The set of processes which participated in the parallel
computation assert that their symbolic representation of
the result matches the corresponding part of the
sequential computation of Step 1.

This procedure ensures that under the assumption that the
sequential implementation is correct the parallel version of the
same algorithm will also produce correct results for every
possible execution.

4. CONCLUSIONS AND FUTURE WORK

The work on this project is still in progress and more
experimental data are still being collected. The initial results are
promising, however. For verification of freedom from deadlock
on the considered algorithm we have demonstrated applicability
of abstractions and reasonable scalability. The constructed models
were capable of performing verification on some examples of
non-trivial cases of matrices.
For verification of computational correctness we have also
observed reasonable scalability of the models to handle non-
trivial dimensions of matrices. We have also demonstrated the
ability to employ the SPIN Model Checker to create and
manipulate symbolic expressions and compare these expressions
for the parallel and sequential versions of the algorithm.
The future work for this project has three main directions:
improving the existing SPIN models, using a different model
checker, and exploring other non-trivial computational examples.
The first direction can also be subdivided into three categories:
optimization of existing data structures, incorporating fragments
of C code into the actual models, and possibly employing theorem
proving packages to assist with manipulation of the symbolic
expressions.

5. REFERENCES

[1] Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E.,
Nitzberg, B., Saphir, W., Snir, M.: MPI - The Complete
Reference: Volume 2, The MPI Extensions. MIT Press,
Cambridge, MA (1998)
[2] Holzmann G.: The SPIN Model Checker. Primer and
Reference Manual. Addison Wesley, 2003
[3] Howard Anton: Elementary Linear Algebra. Wiley, 1977,
Section 1.2
[4] Stephen F. Siegel, George S. Avrunin, Modeling MPI
Programs for Verification, Department of Computer Science,
University of Massachusetts, Amherst, MA 01003, September
2004. (UM-CS-2004-075)
[5] Snir, M. Otto, S., Huss-Lederman, S., Walker, D., Dongarra,
J.: MPI- The Complete Reference: Volume 1, The MPI Core. 2
ed. MIT Press, Cambridge, Massachusetts (2003)

[6] Wilkinson B., Allen M.: Parallel Programming. Techniques
and Applications Using Networked Workstations and Parallel Co
mputers. Prentice Hall, 2nd edition 11.3.

