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ABSTRACT 

The objective of this project was to investigate the application 
of model checking to the formal verification of properties of 
MPI-based parallel scientific programs. By extending a model 
checker with symbolic execution capabilities, we were able to 
verify that a parallel version of the system computed the same 
values as a sequential version. We experimentally evaluated 
this approach for two small numerical programs. Although 
more work needs to be done, this project served as a proof of 
concept. 

1. INTRODUCTION 

Problems in the field of scientific computation often require 
extensive parallelization of the involved algorithms in order to 
execute in reasonable time. Hence, the majority of code for 
solving such problems is written for parallel architectures. 
Programming for such architectures is challenging, making it 
even harder to write “correct” code. 
Programs written for parallel architectures are not only hard to 
create, they are significantly harder to test. Parallelism adds 
complexity and introduces problems, such as deadlock and race 
conditions. Problems like these can be extremely difficult to 
detect. The non-deterministic decisions made by the runtime 
system can make testing even less effective as it can be difficult 
to reproduce the same sequence of execution. Hence, it becomes 
important to have other means for testing and debugging parallel 
code. 
In this work we are investigating the application of model 
checking to code written for parallel architectures using a high-
level language with a library of message passing routines. In 
particular, we are considering two common non-trivial 
mathematical routines for computing the product of two square 
matrices and Gauss-Jordan elimination. The original code is 
written in C using the popular Message-Passing Interface (MPI) 
library. The two specific properties we are concerned with here 
are freedom from deadlock and computational correctness and the 
particular model checker we are using to carry out the verification 
step is the SPIN Model Checker. 
This work is intended to contribute to the current knowledge in 
this area by expanding on several aspects. Model checking 
techniques have been applied to concurrent systems in the past 
but their focus has been primarily on patterns of communication 
rather than the correctness of the computation. Past studies exhibit 
limited experience with MPI and, hence, this work is a 
contribution in this direction as well. 

2. APPROACH 

The choice of using model checking directs us to using the 
following approach for carrying out the formal verification. 
We construct abstract models of the original C code and use a 
model checker to explore all possible executions. A separate 
model is built for each particular property in order to maximize 
the degree of optimization. The models are carefully constructed 
to accurately represent all components of the original code 
relevant to the specific property being checked and abstract away 
most of the irrelevant details. 
Once the models are constructed to represent the relevant 
components of the original code, we define a set of conditions 
that describe the property we are checking and make 
modifications to the models to contain the corresponding checks 
for these conditions. For checking freedom from deadlock there is 
no need to explicitly include the description of this property in the 
code because this check is performed automatically in SPIN. The 
situation is, however, less trivial for specifying the correctness of 
the computation property. 
The property of computational correctness is hard to express in 
general, so we must first define what it is that we believe to be 
correct. Since in this work we are concerned with correctness of 
the parallel code, we base our definition of computational 
correctness on the assumption that the sequential version of the 
same algorithm is correct. Hence, in order to check correctness of 
computation of the parallel algorithm we must verify that the 
parallel version of the algorithm is equivalent to sequential, that is 
for every possible execution and for all possible values of the 
input data both versions of the algorithm produce equivalent 
symbolic expressions. As it turns out, the specific set of assertions 
that must be evaluated by the model checker to verify this 
property varies depending on the computational example. 

3. CASE STUDY 

In this work the two examples of non-trivial mathematical 
computation we are considering are multiplication of two square 
matrices and Gauss-Jordan Elimination. For the case of 
multiplication of matrices we construct two models, one specific 
to verifying freedom from deadlock and the second for checking 
the correctness of computed expressions. For the second example 
Gauss-Jordan elimination, we restrict our attention to only the 
property of computational correctness. The following two 
sections describe these case studies in detail. 



3.1 MULTIPLICATION OF MATRICES 
This example was the first one considered during the course of the 
project and the original C code was adopted from an assignment 
written for an undergraduate course in programming languages at 
the University of Alaska Anchorage. This code performs 
multiplication of two square matrices in parallel. For this example 
we constructed two models, one for checking freedom from 
deadlock and the other one for verifying correctness of 
computation. We will now discuss the specificities of abstractions 
and verification procedures for each model. 
For verification of freedom from deadlock the most relevant 
component of the original code that we model is the MPI 
functions so we could abstract away much of the detail about the 
input data and computation. The verification step in this case is 
performed by simply running the model checker on the 
constructed model in verification mode. SPIN is set to 
automatically check for deadlock by default. 
For verification of computational correctness the key modeling 
decision is the use of symbolic expressions that we construct in 
order to represent numerical data and mathematical expressions 
involved in the process of computation. We extend the model 
checker to create these symbolic representations of the executions 
and carry out any necessary manipulations.  
Verifying the computational correctness property in this model is 
slightly more complicated. The following list outlines the 
sequence of steps we perform in order to carry out the formal 
verification: 

1. Symbolic Computation is performed in parallel, 
generating a matrix of expressions on the root process 

2. The root process does the symbolic computations 
sequentially 

3. The root process loops through the two resultant 
structures checking that they are exactly the same via a 
set of assertions description. 

The assertion statements in SPIN are also checked automatically 
when this model checker is run in the verification mode, and 
hence that is how we carry out the verification step here. 

3.2 GAUSS-JORDAN ELIMINATION 
The Gauss-Jordan Elimination algorithm defines a sequence of 
elementary row operations to reduce any matrix to its reduced 
row echelon form. Gauss-Jordan Elimination is a very standard 
computational routine and for this example we are only verifying 
the property of computational correctness.  
 As it turns out, this is a much harder problem compared to the 
previous example of multiplication of matrices. There are two 
main differences. First, to accurately model the program to take 
into account all possible values of the input data, we must model 
branching, where conditions are functions of the input data. 
Second, the property of computational correctness in this case is 
harder to express since there is no closed formula of the answer, 
which is, again, a consequence of conditional data dependencies. 
To handle the above problems we modify the verification 
procedure defined earlier for the matrix multiplication example in 
the following manner: 

1. Symbolic computation is performed sequentially, 
generating a matrix of expressions on the root process 

as well as maintaining a set of path conditions that has 
been followed during the execution 

2. The computation is performed in parallel following the 
set of path conditions generated at the preceding step 

3. The set of processes which participated in the parallel 
computation assert that their symbolic representation of 
the result matches the corresponding part of the 
sequential computation of Step 1. 

This procedure ensures that under the assumption that the 
sequential implementation is correct the parallel version of the 
same algorithm will also produce correct results for every 
possible execution. 

4. CONCLUSIONS AND FUTURE WORK 

The work on this project is still in progress and more 
experimental data are still being collected. The initial results are 
promising, however. For verification of freedom from deadlock 
on the considered algorithm we have demonstrated applicability 
of abstractions and reasonable scalability. The constructed models 
were capable of performing verification on some examples of 
non-trivial cases of matrices. 
For verification of computational correctness we have also 
observed reasonable scalability of the models to handle non-
trivial dimensions of matrices. We have also demonstrated the 
ability to employ the SPIN Model Checker to create and 
manipulate symbolic expressions and compare these expressions 
for the parallel and sequential versions of the algorithm. 
The future work for this project has three main directions: 
improving the existing SPIN models, using a different model 
checker, and exploring other non-trivial computational examples. 
The first direction can also be subdivided into three categories: 
optimization of existing data structures, incorporating fragments 
of C code into the actual models, and possibly employing theorem 
proving packages to assist with manipulation of the symbolic 
expressions. 
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