
 1

Amanda Hosler
8/18/2004

NUMACK’s Route Planning: Automatically Generating a
Route and its Natural Language Description

Statement of Problem

NUMACK is an Embodied Conversational Agent (ECA). An ECA is a type of
user/computer human-computer interface; a virtual being that communicates with
humans using speech and gesture, rather than using the standard screen and keyboard
interface. ECAs are interesting because from a research standpoint, programming an
ECA and watching how it interacts with humans shows the programmer what actions are
more natural, making the process a learning experience on human behavior.

A central research contribution from NUMACK is the study of the relationship between
gesture and speech and the use of gesture in a spatial information context. This topic is
interesting because many people use gesture when communicating spatial information, so
we can learn whether gestures are saying something that speech is not, what are the
meanings that different types of gestures express, etc. NUMACK will interact with
humans by answering questions and giving directions around the Northwestern
University campus. He’ll use speech recognition and head-tracking to understand a
question, determine the answer, and use speech and gesture in his response. In terms of
HCI, NUMACK could help increase usability in the ECA interface, since information
being conveyed over multiple channels will increase redundancy which improves
understanding.

NUMACK’s response to the user will be created using extended versions of the SPUD
and BEAT systems. SPUD is a natural language generation system (Stone and Doran,
1997). Paul Tepper, who has worked on SPUD, is implementing and extending SPUD to
express spatial information and gesture. He is also implementing a hierarchical structure
in prolog of a spatial information knowledge base. Stefan Kopp implemented his
previous work—automatic inverse kinematics in animation graphics—to a skeletal
structure, which he also created, for NUMACK. He is also working on extending and
implementing BEAT, which is a gesture and speech generator that focuses on timing
those actions using a pipelining approach, for NUMACK.

 2

Figure 1.

NUMACK has an understanding module that recognizes the meaning of the user’s speech
and eye gaze input. The understanding module then sends a message to the content
planner module, phrasing the input in a way the content planner can understand. The
content planner module answers the input, and sends a coded message of that answer to
the microplanner module. Microplanning then makes the message more language
detailed, chooses appropriate lexicon, sentence structure, etc., and then collaborates with
the dialogue planner to create the discourse. An area of NUMACK that needs more
attention is content planning.

A content planning module consists of a knowledge representation or knowledge
database, and usually some planning, i.e. a list of actions that does something with the
relevant knowledge [7]. A simple content planner could be sent the message “what is A”,
look at its knowledge database and see “A = star” and return “star”. In that case planning
isn’t required. The input passed to NUMACK’s content planner is a little more complex.
In general, the input will look like, “how do I get from A to B”. The content planner has
to provide an answer; in this case, the route from A to B. My work addresses this issue
of content planning for routes, in particular the kind of content planning that can be
translated in NUMACK’s later modules into both speech and gesture. The remainder of
this paper describes my work on implementing a route planner for NUMACK.

Previous Research

Computer generated routes and direction giving language have become a relatively
popular research subject and popular among everyday people, so a lot of time has gone
into getting the most usability out of them. Here are some things we know about them:

� Computer generated routes have become very popular and demanded. Route planners

such as Mapquest, Microsoft AutoRoute Great Britain, and Microsoft Streets and
Trips automatically generate a map showing the route from A to B. However, these
route maps are often more difficult to use then hand drawn maps because they do not
distinguish between essential and extraneous information, and therefore lack clarity
[1]. Essential information is considered by Agrawala and Stolte (2001) to be, in the
instance of driving directions, a list of road names and turn directions. The
mentioned route planners include a map of the entire surrounding area, creating
clutter that interferes with essential information.

NUMACK
modules

Understanding Content
Planning

Microplanning

Dialogue
Planning

 3

� A study conducted by P.-E. Michon and M. Denis shows that spoken route directions

include numerous references to landmarks, and that when confronted by directions
that only include a list of street names and turn directions, people react to the absence
of landmarks [6]. Furthermore, the same study showed that landmarks are used most
often at the start and end of a route, when reorienting, and when large open spaces
occur along the route.

� Route finding is guided by our visual perception, i.e. we see our surroundings and

decide where to go when following a route, so features like landmarks are natural
guidelines in finding the way [5]. NUMACK will be communicating face to face via
natural language, so directional, temporal, and spatial language are all useful in
describing the route. For instance, “turn to the right”, “go until the end of the fence”,
and “the fence will be on your right”.

� The best route for one person may not be the best route for another [9]. This can be

extended to the best route descriptions. Person X may be familiar with a different
landmark than person Y, or person X may need more information when some specific
landmark has already been mentioned.

� There is a difference between using specific landmarks and using regions or areas. For

instance, naming a specific building or buildings that someone will pass on their right
vs. saying “there will be several buildings on your right”. Sometimes it is more
effective in a route description to point out regions of areas vs. specific placefs [10].

Perhaps the most relevant previous work is that done by Christopher Habel concerning
multimodal route instructions [4]. His paper features what to communicate, or what to
say, when turning a route into a natural language description. The NUMACK architecture
also uses an incremental approach to the end to end system, similar to Habel’s INC. I
don’t know if his system is completed. But this work with NUMACK is focused on
creating a program which generates the route from A to B and also returns landmarks,
and directional and spatial information to be passed on to a microplanner module to plan
speech and gesture for an Embodied Conversational Agent.

My Approach

NUMACKs content plannerwill consist of a knowledge database, including facts about
the domain. It will also create a plan for the knowledge representation. This means that
it will iterate through a route planning algorithm, and plan the route based on information
about routes found through previous work, and empirical subject data. It will then plan
the knowledge representation of the route using an algorithm that expands the route into a
description of the route made up of directional changes and location changes. This will
be passed to the microplanner to map these descriptions onto words that will be used
during dialogue.

 4

On the first iteration of the project, we went through the videotaped data of 28 subjects
giving directions for a few specific routes at Northwestern University. Each subject gave
directions for Frances Searle to the Allen Center. Other routes included Allen to Norris,
Allen to the Observatory, each of those places to University Hall, and to the Arch.
Landmarks that the subjects widely used were noted as key landmarks for those routes.
For this iteration of the project, we focus on the route described from Frances Searle to
the Allen Center. As shown in Figure 1, the most popular landmarks for this route
included Cook Hall, the parking lot directly to the East of Frances Searle, and the parking
lot directly to the West of the Allen Center. The road going around to the left of Frances
Searle and the grassy area between the end of that road and the parking lot are both
mentioned half of the time. In fact, for almost all the data, parking lots are mentioned
when they are visible from a first person perspective of the route, suggesting that parking
lots are generally used as landmarks in this setting. Landmarks were also mentioned
most around points of reorientation, or the beginning or end of a route, as Michon and
Denis found.

Figure 2.

Frances Searle to Allen Center

Path Landmark Number Percentage
 DNE Sign 1 5.56%
left around Searle to p1 to p2 Roundabout 6 33.33%
count = 18 people out of 28 Alleyway/cul-de-sac 9 50.00%
 Chose this path Bushes 4 22.22%
 From Searle to Allen. Garbage cans 5 27.78%
 Percentages are out of 18 Cook 10 55.56%
 Pancoe 1 5.56%
 Grass Patch / Path 9 50.00%
 ParkingLot 1 (east of Searle) 18 100.00%
 Field 2 11.11%
 Road 7 38.89%
 SPAC 1 5.56%
 Construction 7 38.89%
 Lampposts 1 5.56%
 Parking Lot 2 (west of Allen) 17 94.44%

The route from Frances Searle to Cook and the landmarks mentioned most have been
added to a prolog knowledge database, along with about 10 other landmarks / buildings
that were also mentioned in other routes, and about 15 other points in the route. These
were added to create multiple potential routes so that the route planner has multiple route
possibilities that it has to decide between. This database was created using Prolog
because SPUD is already set up in Prolog and at this point it will be most effective to
create the entire knowledge database in the same language, and eliminate the need for a
communication module. Prolog is a logic programming language, so it holds a database
of facts and rules, and the user queries whether something is true or false using a
command line. Prolog is ideal for search problems like this one, because information

 5

about a graph is easily kept in the database, and easily updated. When a query about a
route is the input to the program, Prolog simply searches the database to see if the
necessary facts are there to create the desired route. This means a lot less code is needed
to do same thing that it would take several classes to do in Java or C++, because of the
structure that those languages require. However, while the Prolog code can be done in
one file, this might mean something harder to read for anyone who is not the author,
because the structure of the different classes is not forced. Some structure can be
achieved by splitting the Prolog code into a couple different well organized files.

After testing the prolog code on the first facts entered in the knowledge base more
information, that is route points and landmarks, should be coded into the database. We
were going to try to determine a theory about picking routes and key landmarks based on
the empirical data supplied by the videotaped subjects. Do subjects describe how to get
from A to B using the shortest route, the popular route, or the most accessible route, etc.
What kinds of patterns are seen in the key landmarks picked, etc. However, the
experiment was held to get good spatial gestures from the subjects, not to get good
information about routes and landmarks. For some of the subjects, if they didn’t know
where exactly one of the route stops was (like Allen), one of the experimenters would
point out the way to get there, thus biasing all the route data for the experiments.
However, the subjects had to walk to each of the places and determine what landmarks
they were going to use to describe the route to someone else, so the landmark data can
still be used. The second iteration of coding relies on our having theories about
landmarks.

So far the route planning knowledge base contains about 16 different labeled vertices that
are actually part of the path, i.e. a location on the path en route to some building or
landmark. These points on the path itself are represented as nodes of a graph, and the
paths from one point to its neighbors are represented as edges, with the distance between
the two nodes as the edge weight. The database also contains some knowledge about
these nodes and edges, for instance relative location between nodes and landmarks (north,
west, etc.). Right now the knowledge base contains about 12 A’s and a B’s (landmarks
that someone at the Northwestern U campus may want directions to, i.e. buildings, the
lagoon, etc.). The database created so far includes a few classes of facts that are hard
coded into the knowledge base. These are:

�vertex(X) where X is a vertex in the graph, and a point in the path that the
route traveler may walk over while traversing the route.
�neighbors(X, NN) where X is a vertex in the graph, and NN is a list of

vertices that share an edge with X.
�coordinates(X, Cx, Cy) where X is a vertex in the graph OR a

landmark and Cx and Cy are the x and y coordinates of X.
�rel_dir(A, B, C) where A is a vertex in the graph, B is a landmark and C

is the direction (e.g. north, west) of B from A.
�path_by_entrance(A, B, C) where A is a building landmark, B is the

direction (e.g. north, west) of the door on the building, and C is the vertex in the
graph near the door of the building.

 6

�abs_dir_to_rel(A, B, C) where A is the current absolute direction that
a route traveler is facing, B is the new absolute direction that the route traveler
turns to face, and C is the relative direction (e.g. left, right) that the traveler will
turn.

There are a set of rules that make a route finder implemented using the A* algorithm.
This algorithm is widely known to be an optimal search, as long as the heuristic is
consistently an underestimate [7]. In this prolog code the search is optimal because the
heuristic simply calculates the distance straight from the current node to the final node,
which is the least possible distance it could travel to get to the final node, clearly an
underestimate. This has been tested first using the route from Frances Searle to the Allen
Center. There are already many different routes that can be queried from the command
line, as long as the necessary information for path points and landmarks are already set up
in the knowledge database.

Here a finding was interesting. Before implementing the A* algorithm, a lowest cost first
search algorithm was being used, i.e. there wasn’t a heuristic implemented yet, it was
only following the cost of the path so far. When running the program querying the route
from Frances Searle to the Allen Center, a list of routes was outputted in the same order
as the user data from most to least commonly described route. But when implementing
the A* algorithm, the order that the routes were outputted changed slightly, so that it
didn’t mirror the user data. But as stated before, the experiment was conducted to college
gesture data, not information about picking routes, and this particular route was
especially biased, because the experimenter told several people how to go from the start
point to the end point.

Figure 3.

As shown in figure 3, the query input asks for directions from one landmark to another
(buildings most likely), and using route_start_and_end/4 Prolog finds the appropriate
path node to start the route, and the appropriate end node to be the goal node, the ending

User queries:

| ?- find_route(frances_searle, allen, Route).
Route = [p1, p6, p4] ?
yes

Code:
find_route(A, B, Route):-
 route_start_and_end(A, B, X, Y),
 assert(goal(Y)),
 heuristic(X, Y, C),

search([node(X, [], 0, C)], BackwardsRoute), !,
 reverse(BackwardsRoute, Route).

 7

point. Using assert/1, the fact that Y is a goal node is entered into the knowledge
database. Then the heuristic is calculated from the start node to the finish one. At each
node, the heuristic to the goal node is calculated. The cut (!) is used so that after the first
route is returned, if the user wants to be presented with a different route, the program
answers ‘no’ instead of giving the next route. With the search rule, the route is returned
in reverse order, calling for the quick reverse of the route before returning it with the
query.

Figure 4.

Once the route exists, (after find_route(A, B, Route)) the program gathers knowledge
about the route from the knowledge database and attaches the directional and spatial
information to each step in the route. The rule face_direction/5 returns the
Cur_Face_Dir, that is the current absolute direction that the route traveler faces at the
beginning of the route. From this information, the face direction can change at each route
point, and the turn direction can be noted with it (i.e. left, right). Also, location changes
can also be noted by using the database fact rel_dir(A, B, C) to attach a landmark to the
route description at each point in the route. This concludes the first iteration of the
project. This iteration is useful in terms of programming because it will figure out the
way the information will look and be passed into and out of the program, and it should be
ready at this point to be set up with the end to end system.

The output generated from the program should be directly compatible with NUMACK’s
microplanning module. The route description should be able to be mapped to specific
words that will be brought up for dialogue between NUMACK and the user. This has not
been set up and tested yet. Similarly, this spatial and directional route information being
returned will be input to determine NUMACKs gestures during speech.

User queries:

| ?- describe_route(frances_searle, allen, Describe).
Describe =
[start_location(frances_searle,direction(behind)),change_
orientation(left),change_location(hogan,direction(left)),
change_orientation(left),change_location(pancoe,direction
(left))] ? yes

Code:
describe_route(A, B, Describe):-
 find_route(A, B, Route),

face_direction(A, Route, Point, NRoute, Cur_Face_Dir),
 list_dir_loc_changes(Cur_Face_Dir, Point, NRoute, Describe).

 8

The End Goal

The product will be a program written in prolog that takes two arguments, starting and
ending points A and B, and finds a list of nodes which consist of the route from A to B.
It will then collect directional, spatial, and temporal information from the knowledge
database to return with the route. The program needs to be fast, because NUMACK will
need to be able to answer these questions in real time. It also needs to be very easily
readable, since this is the first development of the project and might need to be looked at
and changed many times.

This will be successful if communication from this content planning module to
NUMACK’s microplanning module is easy and smooth, and if the information is indeed
what the microplanner needs to know.

Future Work

As stated earlier the route description should be able to be mapped to specific words that
will be brought up for dialogue between NUMACK and the user. This has not been set
up and tested yet, and this is the next step that needs to be done to help the end to end
system. A similar set up needs to be created for mapping to gesture planning.

On the second iteration of the project, many more landmarks should be added to the
database, which are picked according to the patterns we found in the subjects. From [6]
we know that landmarks are 3D and 2D objects that are pointed out near the beginning
and end of the route, and when changing direction or coming upon an open space where
it is not clear which direction to go. Many path points also need to be added to the
knowledge database, creating a larger domain, and many more routes that NUMACK can
describe. In some instances they can be added to clean the knowledge that already exists
by creating a more accurate representation of the points that need to be traversed in a path

During NUMACK’s dialogue with the user, his discourse history should be able to assess
which landmarks and directional, temporal, and spatial language need to be elaborated
(for instance, if NUMACK has already said “a parking lot will be on your right” and the
user asks for more information, he can then say “the lake will be in front of you” or “a
statue will be on your left”). Should this be the responsibility of the content planner or
the microplanner? Perhaps a query can be sent to the content planner which then iterates
through the route and pulls up more, or different, landmarks at the elaboration point.
This would certainly be useful, and this also is imperative for gesture.

In the future it would be nice to automatically generate the knowledge database on the
basis of a map, that is, read in the map, and come out with path points and landmarks,
coordinates, etc.

 9

Resources

1. Agrawala, M., & Stolte, C. (2001). Rendering Effective Route Maps: Improving
Usability Through Generalization. In Proceedings of the 28th annual Conf. on
Computer Graphics and Interactive Techniques, pp. 241-249.

2. Clocksin, W. F., & Mellish, C. S. Programming in Prolog. Fourth Edition.

Sringer-Verlag Berlin Heidelberg New York. 1994.

3. Duboue, P., & McKeown, K. (2002). Content Planner Construction via
Evolutionary Algorithms and a Corpus-Based Fitness Function. In Proceedings of
the Second International Natural Language Generation Conference.

4. Habel, C. (2003). Incremental generation of multimodal route instructions.

Technical Report- American Association for Artificial Intelligence, pp. 44-51.

5. Maaß, W., & Wazinski, P. (1993). Gerd Herzog. VITRA GUIDE: Multimodal
Route Descriptions for Computer Assisted Vehicle Navigation. In Proceedings of
the Sixth Int. Conf. on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems IEA/AIE-93, pp. 144-147, Edinburgh, Scotland.

6. Michon, P.E., Denis, M. (2001). When and Why Are Visual Landmarks Used in

Giving Directions? COSIT 2001, pp. 292-305.

7. Poole, D., Mackworth, A., & Goebel, R. Computational Intelligence: A Logical
Approach. Oxford University Press, Inc. New York, 1998. ch. 4.

8. Reiter, E., & Dale, R. Building Natural Language Generation Systems.

Cambridge University Press, 1999. Ch 4.

9. Rogers, S., Fiechter, C. N., & Langley, P. (1999). An Adaptive Interactive Agent
for Route Advice. In Proceedings of the third annual conference on Autonomous
Agents, pages 198-205, Seattle, WA, 1999.

10. Sterling, L., & Shapiro, E. The Art of Prolog. Massachusetts Institute of

Technology Press. 1994

11. Wiener, J. M., Mallot, H. A. (2003). Route Planning in Hierarchically Structured
Environments: From Places to Regions. EuroCogSci (2003).

