
Branching in Biological Models of Computation

Bethany Andres-Beck

Smith University
Vera Bereg

University of British Columbia
Stephanie Lee

Columbia University

Michael Lindmark
University of Washington

Wojciech Makowiecki
AGH University of Science and Technology

Jagiellonian University

August 9, 2004

Abstract

 In this paper, we will look at DNA computing, in particular at different ways that
branching can be done in the sticker model (Roweis et. al. 1996) and the solutions to the
NP complete problems. We will refer to control structures that are used in programming
languages, looping and “if else” statements, as branching. There are five sections to this
paper.

 The first section will describe the process of DNA transcription then suggest a
way that branching can be implemented into this process through the use of an OR gate.
The section will continue to discuss the pros and cons of this idea.

 The second section will look at a series of approaches to DNA computing and
how branching is implemented or could be implemented in them.

 The third section will briefly review state automata then go on to explaining a
recent success in DNA computing ─ “The smart drug” experiment, its conclusions and
implications for branching in DNA computing. It will look at a possible combination of
the “smart” drug and the sticker models. In conclusion, pluses along with the minuses of
this combination will be explored.

 The fourth section will continue to look at expanding the DNA Sticker Based
model of computation to include looping and if - then branching instructions without any
outside intervention. Unfortunately in the process of adding these capabilities to the
model, it gets complicated and very likely impractical. However the model is still
valuable from a theoretical standpoint as an example of the computational power of
DNA.

 The last section of the paper will give an overview of some basic concepts which
are the key to understanding why it is so important to find new ways of building
computers, define what it means for a problem to be NP-com(plete), then describe the
SAT problem which belongs to NP-com class of problems. Further this section will
present the Cook’s theorem which proofs SAT problem to be an example of NP-com
problem and mention some examples of NP-com problems. The common features
between branching and NP-com problems will be pointed out along with a few examples
of computations on DNA computer which are presently possible. In the end, the weak
points of computing NP-com problems on DNA computers will be briefly discussed. At
the end of the paper some common conclusions will be stated.

Introduction

 In this paper, we would like to take a look at DNA computing, in particular at
different ways that branching can be done in the sticker model (Roweis et. al. 1996) and
the solutions to the NP complete problems. We will refer to control structures that are
used in programming languages, looping and “if else” statements, as branching. There are
five sections to this paper.

 There are many ways in which branching can be done. We have listed and
described a number of them: transcriptional logic branching, sticker model branching,
“smart” drug model branching, CPU branching incorporated into the sticker model, and
branching in the solutions to the SAT problems.

 Branching can be viewed as anything that supports different path taking, sort of a
fork in the road where one can make a decision about which route to follow. Thus any of
the control structures can be viewed as branching ones. An OR gate or a FOR loop that
many of us who are familiar with programming know well, are control structures and
thus have rudimentary branching. Branching exists in the decision trees and a path that a
binary algorithm takes. Branching is when a doctor diagnoses a patient and decides on
whether s/he is sick and what drug if any to prescribe. Branching is a world in its own.
One can say that algorithm analysis and logic heavily relies on branching.

 Another no less wonderful and magnificent world of its own is cellular biology
and in particular, DNA. DNA is a code that the nature has came up with through trial and
error way before any human being was capable of thinking of programming something,
or even before Homo Sapiens exited.

 The sections of this paper take you through all or most other above. We hope that
you find this paper an interesting read.

Branching in DNA Transcription

By Stephanie Lee

Introduction

DNA has a lot of unique but
simple properties which allow it to be
easily programmable and also easy to
use in experiments. In this part of the
paper some of these properties will be
explored and used to expand the
capabilities of the physical limits of
scientific experimentation by attempting
to introduce branching to the process of
DNA transcription.

DNA and RNA basics

 DNA is structured so that each
piece is a sequence of DNA nucleotides,
each of which is composed of a
deoxyribose sugar, a phosphate, and a
nitrogenous base. There are four bases in
DNA: adenine (A), thymine (T), guanine
(G), and cytosine (C). What allows for
such variation in DNA is the length of
the strands and the sequence of these
nucleotides. The sugar and phosphate are
the same in every nucleotide and the
sugar attaches to the phosphate in the
next nucleotide in such a way that
together, the sugars and phosphates of
the nucleotides create what is known as
a sugar-phosphate backbone. This
uniformity allows for DNA to assemble
with any sequence of DNA nucleotides
to form a strand, and consequently, a
DNA sequence is usually noted by the
sequence of the bases. One important
property of these bases is their specific
base pairing – the fact that that each base
is only complementary with one of the
other bases. Adenine and guanine are
both purines, meaning that they both
have two organic rings. Thymine and

cytosine are both pyrimidines, meaning
they each have one organic ring. To keep
the width of double stranded DNA
consistent, each purine can only bind
with a pyrimidine. Two purines would
make the width too large and two
pyrimidines would make the width too
small. In addition, the structure of each
base only allows it to form two or three
hydrogen bonds. Adenine and theymine
can only form two while guanine and
cytosine can form three. Therefore,
adenine, with two organic rings, can
only bind with thymine, which has one
organic ring. Similarly, guanine, with
two organic rings, can only bind with
cytosine, which has one organic ring.
The simple but specific structure of
DNA allows each base to only have one
other base with which it can pair.
 RNA has a very similar structure
to DNA. One o f the main differences is
that its sugar is ribose instead of
deoxyrisbose. However, RNA is still
composed of sequences of various
nucleotides. Another difference between
DNA and RNA is in the bases. RNA has
the base uracil (U) instead of thymine
(T). Conveniently, uracil also binds to
adenine, so there is no difference in
which bases are compatible.

The Process of DNA Transcription

 DNA transcription is a process
which results in the synthesis of RNA.
There are three stages: initiation,
elongation, and termination.
 When a strand of DNA is aligned
in the 5’ to 3’ direction, the beginning of
the sequence, about the first 100
nucleotides on the 5’ end, is called the

promoter sequence. When the promoter
finds the complementary sequence on
another strand of DNA going in the 3’ to
5’ direction, the complementary
nucleotides at each position in the two
strands will bind. With DNA
transcription, this promoter sequence
starts with what is called the “TATA
box” because it is usually made entirely,
or at least mostly, of thymine (T) and
adenine (A) nucleotides, which means
that the complement to the promoter,
which would be found on the
complementary DNA strand, is also
made up entirely or mostly of thymine
and adenine as well.
 Subsequently, certain proteins
called transcription factors bind to the
promoter, including one which
recognizes the “TATA box.” After the
proper transcription factors are bound to
the promoter, RNA polymerase, the key
enzyme in DNA transcription, binds as
well. Once the RNA polymerase binds, it
unwinds the two strands of DNA, and
using the one in the 3’ to 5’ direction as
the template strand, gets the RNA
nucleotides and base pairs them to the
template strand. About 10 to 20 DNA
bases are exposed at a time, and the
DNA transcription process occurs at a
rate of about 60 nucleotides per second.5

 Thus the expression is turned on,
meaning the following DNA is read and
expressed as output, in the form of RNA.
The specific output is based on the
specific sequence of DNA nucleotides.
This elongation phase continues as the
RNA polymerase continues along the
DNA until it reaches the terminator.
 When the RNA polymerase
encounters the terminator, the
termination phase begins. The
transcription of the specific DNA
sequence – that is the RNA sequence
AAUAAA – functions as the actual

termination signal, prompting the
enzyme to cut the RNA 10-35
nucleotides later. A temporary double
helix hairpin loop in the RNA forms and
eventually the stress this causes in the
RNA polymerase enzyme results in a cut
in the RNA strand and the termination of
the DNA transcription process.

The rate of DNA transcription is
controlled by the concentrations of the
transcription factors and RNA
polymerase, allowing for easy regulation
of the expression of output. The
concentration of a specific output is
directly related to the concentration of
the corresponding transcription factors
since they are necessary for the
instruction resulting in that output to be
read. In addition, oftentimes, the
concentration of a specific output is also
related to the repression of the output,
allowing for self-regulation. Once the
proper concentration of the output is
reached, there is enough of that
instruction’s repressor to prevent that
output from being promoted, and the
instruction is essentially “turned off.”

Programming DNA Transcription

 The sequence of the nucleotides
in the RNA strand resulting from DNA
transcription is directly related to the
DNA sequence which is read. Thus, the
input can easily be programmed to
perform a specific output. With modern
technology, it is fairly easy to control the
sequence of nucleotides in DNA, which
therefore determines the sequence in
both the complementary strand of DNA
and the output strand of RNA.

Definition of Branching

 Branching allows for conditional
if-else statements to be used. If the

condition is true, then one instruction is
executed, but if the condition is false,
then a different instruction is executed.
The program then continues, regardless
of which instruction was followed. The
pseudo code looks like this:
 {
 if (condition)
 {output 1};
 else
 {output 2};
 }
 continuation …
The continuation is important because it
makes sure that the program does not die
after the if-else statement in both cases –
the case that the statement is true (the if
case) and the case that the statement is
not true (the else case).

Implementing Branching in DNA
Transcription

 Branching can be implemented in
DNA transcription using an OR gate,8
which would allow for the continuation
whether or not the condition is found to
be true. If the condition is true, a specific
transcription factor, 1a, is present, and
will bind to the promoter region of the
strands of DNA for which the condition
is true. RNA polymerase will then bind
to the promoter and the output indicating
that the condition is true will
subsequently be expressed. But the DNA
sequence launching the construction of
the transcription factor for the second
instruction, 2, would also be executed.
The promoter regions for those strands
where the condition is false will have an
affinity for a different transcription
factor, 1b. This will result in a different
output, indicating that the condition is
false, but the same DNA sequence
ordering the construction of 2 would also
be present. The second instruction will

be read if the condition is true and if it is
false, allowing for the essential
continuation.

Pros and Cons

 One of the pros of this process is
that it is easy to program both the output
and the speed. The output is controlled
by the DNA sequences, which can easily
be customized with today’s technology,
and the speed can be controlled by the
concentrations of the transcription
factors and the RNA polymerase. It is
also easy to track the progress by taking
a sample and approximating the
concentrations of each of the outputs.
Another important benefit of this process
is that it does not require assistance at
every step [from a robot], which some
DNA experiments such as the sticker
model do. Since the basic if-else
statement has been explain, the idea can
also be expanded to implement if-else if
statements as well.
 One of the drawbacks of this
process is that it does not allow for
parallelism. In addition, it is somewhat
inefficient and in reality would probably
be fairly slow.

Conclusion

 The properties of DNA allow it
to be used in a lot of different
applications, and this section of the
paper has explored a new one of these –
branching in the process of DNA
transcription. The rest of this paper will
explore further into the new possibilities
DNA presents, including looking further
into the possibility branching with DNA.

Figure 1.

This figure gives a visual representation of the basic setup of DNA transcription. After the proper
transcription factors have bound to the promoter, the enzyme RNA polymerase (RNAP) binds to the
promoter region of the DNA as well. The expression is then turned on and RNAP proceeds until it
reaches the terminator, shortly after which the process terminates.

Figure 2.

This figure demonstrates the OR gate which allows for the implementation of branching in DNA
transcription. If the condition is true for a sample of DNA, then a specific transcription factor will be
present, and a specific programmable output will be expressed, as well as the transcription factor for
the next instruction, allowing for continuation. If the condition is false, a different transcription factor
will be present and a different programmable output will be expressed in addition to the transcription
factor for the next instruction. Since the transcription factor for the next instruction is present
regardless of whether or not the condition is true, continuation is possible.

Branching using existing instructions in the Sticker model of DNA computation
Bethany Andres-Beck

The sticker model (Roweis et.
al. 1996) performs computation by
manipulating two types of single
stranded DNA: memory strands and
complementary stickers. The stickers
will adhere to exactly one position on
the memory strand, representing one
bit of data. (See Figure 1.)

Many memory strands are
acted on in parallel, which provides the
power of DNA computation. A single
vial can have one of four operations
performed on it. Set adds a
complementary sticker for a bit, setting
it to one, clear eliminates a
complementary sticker, setting that bit
to zero, separate divides the strands
into two vials based on a condition,
and combine recombines tow vials that
had been separated. (See Figure 2.)

Using these existing
commands, branching is already
possible. We take branch instructions
to be in the form
“IF…THEN…ELSE”, where IF is the
condition, THEN is to be performed on
those strands where the condition is
true and ELSE on those where it is
false. To perform a branch operation
based on a condition separated the
DNA by that condition. On the vial for
which the condition is true, perform
the THEN instructions. On the other
perform the ELSE instructions. Then
recombine them. To test for more
complex conditions, multiple separates
may be performed and the strands that
fail combined into an ELSE vial.
Since an instruction set can always be
empty, this covers all branch
instructions.

To perform looping, we need
the ability to test for a condition
without disrupting the DNA. One way

of doing this is to use fluorescent
markers. These are single stranded
complementary markers which will
adhere if the bit they complement to is
zero and won’t if it is one. After
adding them careful measures must be
taken to assure that non-adhered
fluorescents remain.

These have several advantages.
First, they can be detected by a robotic
assistant, eliminating the need for
human interaction or lengthy testing
procedures to establish the presence of
strands that fulfill a condition. Second,
they are reversible. Clearing the bit
they are complementary to will clear
them. Third, acceptance conditions are
variable, and a level of fluorescents
that constitutes a “true” can be set
according to need and the level of
experimental error. Finally, the robotic
assistant can detect different types of
fluorescence, allowing for multiple
markers to be present at once and
enabling nested looping.

We will take loops to be in the
form “LOOP WHILE…END LOOP”.
When it reaches the END LOOP
instruction, the robotic assistant
performs a separate based of the loop
condition, adds a fluorescence marker
to the tube that would fulfill that
condition. It must be a positive test;
that is, it must test for the presences of
the marker not the absence, since the
absence could also indicate an absence
of strands and would lead to operations
being performed on an empty vial.
This can easily be accomplished in
cases where the condition is a positive
by performing a clear operation on a
bit and adding a marker
complementary to that bit. If the
WHILE condition is true, the robotic
assistant goes through the loop
instructions again with that vial. If it is

false, it recombines the vials and
continues on to the remainder of the
instruction set.

This method does have some
problems. First, it relies on
intervention from outside the model by
the robotic assistant. This complicates
the model, adds additional room for
error and is less desirable than a fully
contained model. The second is the
variable levels of fluorescence.
Experimental error is likely to mean
there will always be some fluorescence
present, but there may be times we
wish to loop if there is a single strand
present that fulfils the condition. We

sacrifice that ability when we use this
method of loops.

Finally, both the branching and
the looping described here are slow.
They involve separate operations,
which are difficult, although not
impossible to perform accurately
(Roweis et. al. 1996). This is a
particular disadvantage of the sticker
model, but branching and looping
operations increase the complexity and
use more of these slower operations.
However, this jump in complexity also
allows for easier mapping of
conventional algorithms on to the
massively parallel structure of DNA.

Figure 1

Figure 2

Incorporating branching from the “Smart” drug6 model with the Sticker model

by Vera Bespamiatnykh (Bereg)

Introduction

 The basic idea of this section is
to use the “if else” statements from the
“smart” drug model with stickers
instead of drugs. This way some of the
robotic operations from the sticker
model may be eliminated and it might
even be possible to consider a model
where no robotic intervention is
necessary. This is a very simple and
yet powerful idea, which in the end
might require less than or equal to the
original sticker model computation
time per a given problem. Thus the
objective is to get rid of as many
mechanical operations proposed in the
sticker model as possible, while trying
to ensure that the advantages of the
sticker model are preserved.

 In the heart of the “smart” drug
model is the finite state automaton, a
concept very familiar to a computer
scientist. Automata are devices that
convert information from one form
into another according to a definite
procedure. Thus they have states, one
of which is marked as an initial state,
some terminating/accepting states and
rules that have a starting and a
destination states, plus an action that
occurs when this rule is being
executed.

This example illustrates a rule, which
can be interpreted as “when we go
from state zero to state one, append
letter ‘b’ to our string of characters
(which is initially zero)”. Here is a
graph representation of an automaton
from which this rule could be inferred:

This is a machine that accepts strings
over an alphabet {a,b} that are in its
language L. Language L, in this case,
has a special feature, all its words can
contain only a zero or an even number
of b’s. At any given moment when
machine is running, it can be in one of
its finite number of internal states. The
computation terminates on processing
the last string (input) symbol. An
automaton accepts a string if it
terminates in an accepting final state.

 The programmable and
autonomous computing machine that
Benenson et all did used biomolecules
as its hardware and software4. In
particular, the hardware consisted of a
restriction nuclease and ligase, whereas
the software and input were encoded

by the double-stranded DNA (ds
DNA). The programming part
amounted to choosing appropriate
software molecules. Once the solutions
with these components were mixed the
automaton started to processes the
input molecule via a sequence of
restriction, hybridazation and ligation
cycles. In the end, a detectable output
molecule that encoded the automaton’s
final state, and thus the computation
result was produced.

 This was the concept that
Benson and his colleges have tested
out in the laboratory with florescent
light as output of the computation.
However, later on they have thought of
an even more interesting idea: “local
diagnosis and drug administration”,
that is the diagnosis of sickness and
drug administration (or its suppression)
was transferred into the cell. Thus,
they were still using an automaton, but
its computation was viewed as a series
of steps in a diagnosis of a sickness
(prostate cancer), while its output was
an action of administrating the drug or
a drug suppressor.

 In the “smart” drug model3,
hardware and software were used just
like in the previous automata
experiment. First a FolkI cleaves the
input molecule and exposes the sticky
ends. Then transition molecules
(double stranded DNA) try to bind to
the input, if they can, then a
hybridization occurs and a ligation
follows. The FolkI binding and
cleaving off yet another piece off the
input molecule forms the next
configuration. Thus, there is a series of
“if-then” statements that gets
evaluated. If they all evaluate to “true”,
then the drug or an anti-drug will be
released (depending on what the
evaluation is supposed to signify, is the

cell cancerous, or not?). Note that it is
possible for the evaluation to get stuck
at some intermediate step and never
reach the release of the drug/anti-drug.

 The following is a
representation of the states that the
final state automata had to go through
in the “smart” drug experiment:

Ellipses represent states. The blue is
the initial state. The green states
represent “true” states, the red states
represent the “false” states (evaluation
of the “if” statement). The light green
state is where the drug or the drug
repressor is being released.

 The design of this automaton
incorporates the idea of molecular
Turing machines. Therefore programs
that are being run on the conventional
computers are in theory computable by
the drug model. The “smart” drug
model has “if-else” statements and thus
branching is possible. Another thing
that captures the imagination is that
there was no need for any robotic
intervention, and the computation was
done in parallel. The timing was
reasonable and this has already been
tested out in the laboratory (as opposed
to the sticker model). Unfortunately,
for the “smart” drug model it has been
implemented in vitro and has not been
tried in vivo yet. However this should
not affect the sticker model as it was
meant to be used in vitro anyway. It is
true that the sticker model uses no
costly-to-manufacture enzymes,

however, in the “drug” model they are
only used as hardware and thus are
reusable.

 Here is how the two models
can be combined: we use stickers and
anti-stickers (ie those that peel a
sticker off the memory strand) instead
of the drug generating single stranded
molecules. Therefore, in the test tube
we would have our memory strand
from the sticker model and the final
state automata from the drug model
with its input, hardware and software.
Thus we need to manufacture the
appropriate single stranded DNA,
which will be used as the input that
would fold on itself. It should have its
ends complimentary to one another, so
that they would be able to bind easily
leaving the sticker/anti-sticker in a
hairpin loop (input molecule), and put
in the “rules” (or software) that we
would like to use in this computation.

1. FolkI enzyme that cleaves the DNA
molecule exposing the sticky ends
(hardware)

2. Transition molecules (software)

3. Input molecule (with a hairpin in
red—sticker/anti-sticker)

4. Output (sticker/anti-sticker)

 By manipulating the software
and the input molecule’s code, I
believe it is possible to model the
behavior of random setting/unsetting
of bits on given memory strands in the
sticker model. It could be true that the
separation/set bit/clear bit operations
could be eliminated all together. This
would mean that there would be no
need for any intervention and the
sticker model would become more
feasible and robust.

 It is easy to see how an SISD
model could be done with the
combination of sticker and “smart”
drug models. In order to be able to do a
MIMD, we need to answer the
following question: How do we ensure
that each sequence of “if-then”
statements operates on its specific
memory strand? Or better yet, do we
need to ensure this? It is conceivable
that we might not need to ensure this at
all, since we are trying to model
random setting of bits.

 In conclusion, it is true that
there are other things that one needs to
consider before finalizing this model
and trying it out in the laboratory. For
example: Would the environment that
the “smart” drug model requires be
suitable for the sticker model? Would
the time taken by the robotic assistant
to carry out the procedure, plus the
time that it takes the chemical changes
to take place (ie stickers binding to
memory strand, and being peeled off
by an anti-sticker) be equivalent to the
time it takes to carry out the “if-else”
statements in the vile/tube (ie the
binding of FolkI, it cleaving off a piece
of the code, until the sticker/anti-
sticker is released). It is conceivable
that the time taken by the original

sticker model to carry out the
procedure would be larger than that of
the combination of the two, as long as
the sequence of the “if-then”
statements is not too long (as when a
lot of binding of the FolkI and it
cleaving the code is required it might
take a while).

Conclusion

 The length of the sequence
allowed in the hairpin part of the input
to the “smart” drug model, however,
could be up to 21 bases. This is the
length or a sticker that he sticker model
proposed (around 20 nucleotides).
Therefore this part seems to fit. Once
the other concerns are taken care of, I
believe that this branching model could
be quite powerful.

Further Expanding the Sticker-Based Model

By Michael Lindmark

Introduction

In this section we continue to look at
expanding the DNA Sticker Based
model of computation to include
looping and if - then branching
instructions without any outside
intervention. Unfortunately in the
process of adding these capabilities to
the model, it gets complicated and very
likely impractical. However the model
is still valuable from a theoretical
standpoint as an example of the
computational power of DNA.

Changes to the standard model

This extension makes a few changes to
the strands used in the basic model. To
add branching we need to have
selective operations, operations that are
only applied to certain data. This
model accomplishes this by borrowing
a few ideas from computers. In effect,
it introduces a program that is written
in DNA and uses a DNA version of a
program counter which keeps track of
which instruction the program is
currently running. To implement this
in DNA we introduce an instruction
strand, a couple types of helper strands
to run the program counter and a
number of solid-bound DNA chambers
like those used for the separate
operation in the original model.

The instruction strands consist of a
head region followed by the string of
instructions and end with the data
connector. The head region provides
the start location of the program. Each
instruction is divided into two pieces,
the instruction code and the operand
code. The instruction code specifies
which operation is to be performed:
set, clear, if, end-if, loop-if-not, and
exit. Notice that the separate and
combine operations from the original
model are no longer part of the
operation set. For all operations the
operand code specifies on which bit
the operation is performed.

The DNA program counter is
implemented by four types of strands
working together. The first of these is
the start strand
which enables
the program to
start by
pointing to the first instruction. It is
simple, consisting of a sequence
complementary to the head marker and
the next sequence, which is the pointer
signifying that the following
instruction should be performed next.

The next type of strand performs the
primary function of the counter;
incrementing. The pc strands contain a
toehold region, the complement of the

next marker, the
complement of one
instruction, and the
next2 marker. The
toehold is used by the
anti-pc strands, which
are complete
complements of pc
strands, for removing

pc strands from the instruction strands.

The next marker ensures that only the
current instruction is covered by the
complement instruction region. The
next2 marker signifies that the next
instruction is ready, but will not allow
another pc strand to bind, ensuring that
the pointer is only incremented by one

instruction regardless of the number of
pc strands around.

The last type
of strand, the
step strand,
performs the
simple
operation of converting a next2 marker
to a next marker. It is part of the
system that prevents more than one
instruction from being covered every
cycle.

The key part of the operation
selectivity
that this
model
requires is
achieved by
using solid-
bound operation selectors. The
selectors work exactly like the
separation tubes in the original model,
except instead of being complements
of the bit tags they complement the
next marker and the instruction marker
that it is selecting for.

The only change that needs to be made
to the data strand is the addition of the

instruction-data connector at one end.

The execution cycle

To run a program on the extended
model the instructions are first
translated into an instruction strand.
This strand is duplicated and then
added to a mixture of randomly set
data strands. Once connected the start
strands are added to initialize the
program counter, and then the strands
enter the compute cycle. All of the
strands pass through a series of

operation selector chambers, each of
which bind a specific instruction
marker and the next tag from the pc
strands. After all of the strands are
selected into different chambers they
are sealed away and the selected
operation is performed. The series of
operation chambers include those for
the operations set bit 1, 2 ... n, clear
bit 1, 2 ... n, if bit 1, 2 ... n, loop-if-not
bit 1, 2 … n, and exit. After all of the
individual operations have been
performed the strands are released
from the selectors and collected. All
of the various pc strands are then
added to the collected strands, so that
one strand binds to each instruction
strand. Then the rest of the pc strands
are removed and step strands are
added, preparing the instructions for
the next cycle. This two step process
is required to ensure that the counter
can only increment by one instruction
every cycle. After removal of the step
strands the cycle is repeated. The
computation ends when an exit
instruction is reached. The strands that
are sorted into the exit selector are
removed from the system and the
answer of the finished computation is

ready. One could easily extend the
one exit instruction into an exit-true
and an exit-false and then only the
exit-true strands would need to be
read. Once the computation is

completed all of the strands can then
be sorted, separated, and all strands

except the instruction strands can be
reused in another computation.

New extension if - then branching

Branching is achieved by slightly
altering the design of the if operation
selectors and directing the selected
strands into a separate sub cycle. The
if selector chambers contain specially
weakened selectors that are not strong
enough to bind an instruction strand
without further help. That help comes
from other solid-bound DNA that
complements the operand bit. So
instruction-data strands in which if bit
one is the next instruction and bit one
is clear are the only strands that bind in
the if bit one selector. All of these
selected strands enter a sub-cycle to
skip all instructions until the next end-
if bit one instruction. This is done by
adding an excess of all of the pc and
step strands except for the pc strand
that corresponds to end-if one
operation. The strands are then
selected by the end-if selector chamber
to guarantee that the counter has
incremented enough. Those strands
which fail to bind remain in the sub-
cycle while the bound ones are
returned to the main cycle. The extra
end-if operation is required to allow for
nested branching by providing
different return points based on the if
condition.

New extension looping

For looping the model takes advantage
of branching help instead of trying to
address instructions individually. The
loop-if-not instructions are selected in
the same way if selectors work,
requiring a clear operand bit in
addition to the next and instruction
tags. The selected strands are then
cleared of pc strands by adding all of
the anti-pc strands. The toehold region

allows the anti-pc strands to pull off
the pc strands and leave the instruction
strand with only the start strand bound.
This idea of looping could be more
intuitively called start-over-if-not.
With a little extra branching help
traditional looping can be attained.
The following pseudo code
demonstrates.

if (stage1) {
…
if (NOT done) {

loop;
}
…
stage1 = false;

}

Complexity

The extensions to the model and the
added requirement of no outside
intervention while the computation is
running force this model to be much
more complicated than the Sticker
Based Computing Model on which it
was based. Assuming that n is the
number of data bits the complexity in
terms of unique strands is 16n + 7 =
O(n). The number of chambers as
currently set up is 5n + C = O(n). A
majority of the complexity is in finding
the correct design and binding lengths
to get energy differences between the
various strands correct.

Problems and issues

This model suffers from the same
difficulties as the original Sticker
Model. There is a tradeoff between the
error rates and the compute cycle
speed. The time consuming selecting
process and lost strands are the major
drawbacks. Possible solutions may
include using lots of duplicate strands,
synthetic DNA backbones or use of
metal nano-crystals.

Exploring branching in SAT problems

by Wojciech Makowiecki

Introduction:

The most important question in
Computer Science still lacks the
answers.
Does P equal NP ? Nobody knows,
though most experts in theory of
computation suppose it does not. If this
is the case and we can not find better
algorithms for some extremely crucial
problems, we need to find a different
approach. The speed of processors
doubles twice in 18 months, but it is
not enough when we take into
consideration NP-complete problems.
Even 1000 times faster computers will
not let us solve big enough instances of
problems that could be useful in
practice. As Adleman has shown first
in 1994 and then in 2002*(1), it is
possible to solve complex problems
using a DNA computer.

Definition: NP-complete problem

NP ("non-deterministic polynomial-
time") is the set of decision problems
solvable in polynomial time on a non-
deterministic Turing machine.

NP-com is the complexity class of
decision problems for which answers
can be checked for correctness, given a
certificate by an algorithm whose run
time is polynomial in the size of the
input (that is, it is NP) and no other NP
problem is more than a polynomial
factor harder.

A decision problem C is NP-complete
if it is in NP, and if every other
problem in NP is reducible to it.

Description of SAT problem

The Boolean satisfiability problem
(SAT) is a decision problem.

An instance of the problem is defined
by a Boolean expression written using
only AND, OR, NOT variables, and
parentheses.
The question is: given the expression,
is there some assignment of TRUE and
FALSE values to the variables that will
make the entire expression true?

Example of SAT problem:

E = (x1 or ~x2 or ~x3) and (x1 or x2 or
x4)

x1,... - variables
~ - indicates “not”
~x2,... - negations of variables
or, and - boolean operators

Cook’s theorem

The language SAT of satisfiable
Boolean formulas is NP-complete.

Definition. polynomial-time Turing
reduction (Cook reduction)

Formally:

A polynomial-time Turing reduction or
Cook reduction of a decision problem
L to a decision problem M is an oracle
machine that has an oracle for M and
can decide L in polynomial time.

More intuitively:

If such a reduction exists, than every
algorithm for M immediately yields an
algorithm for L, with only a modest
(i.e. polynomial) slow-down.
Some important examples of NP-com

problems:

- Boolean satisfiability problem (SAT)
- Traveling salesman problem (TSP)

- Hamiltonian cycle problem
- Subgraph isomorphism problem
- Vertex cover problem
- Independent Set problem
- Fifteen puzzle

Branching and NP-com problems

It has not been proved yet but is most
probable that no general efficient
solution exists for any NP-complete
problem.
Consider the SAT problem. There is no
known algorithm that is faster than the
exponential one. Each boolean variable
can be assigned either “true” or
“false”. If we have 1 variable we have
only 2 possibilities. When we have 20
variables number of possible
assignments grows exponentially to
220=1,048,576. One can check whether
the first variable is “true” or “flase”
and in each case an appropriate action
is done. So it reflects the “if
condition”.
In classical approach the computer
checks every possible combination one
by one. The idea behind DNA
computer is different. It works in
parallel.
It does not try every single possibility
but tries criteria one by one,
eliminating all false solutions that do
not satisfy the criteria. It starts by the
first criterion, deletes all solutions
which do not suit the condition, then
checks solutions whether or not they
satisfy the next criterion and if they do
not it deletes them as well, and so on
until all criteria are checked.
It is so powerful because every “if”
acts on several variables at the same
time.
We can imagine every variable in the
problem as a node in the tree and two
values can take (either “true” or
“false”) as branches. The Classical
computation would rely on searching

the tree using certain algorithm (like
depth-first search). In contrast DNA
computation will depend on checking
few nodes and cutting out the
appropriate branches, not checking
nodes one by one.
At the end of the procedure, only the
solution(s) will survive. The last thing
one needs to do is to read off the
solution.

Few different models that are being
used are as follows:

- Slightly modified Sticker model 2
- Surface based approach to DNA

computation 11
- Fluorescent DNA computing
(“molecular beacon”) 14

Conclusions

Even though DNA computers heavily
utilize parallelism, they cannot solve
any instances of NP-complete problem.
They do not seem to be scalable
enough to solve problems of practical
importance. A theoretical forecast
expanse for solving 50 variable SAT
problem is high, as producing DNA
sequences needed for this approach is
expensive. In addition, it may be hard
to design enough unique DNA strands,
to encode all solutions that will not
interfere with each other. The other
important issue is the problem with
data correction as error rate might get
higher with attempts to solve larger
problems. There exist however some
strategies for handling error correction
7,9. As many researchers including the
inventor of DNA computing professor
Len Adleman believe the future of
DNA computing might be something
else other than SAT problem solving,
it is still interesting and very young
field of study.

Conclusion

In this paper, we have tried to list and describe different ways that branching in DNA
computing can be thought of and realized as. There are limitations and barriers that
each one of the described here models has, however, they all have their advantages,
benefits and purposes.

In conclusion, we would like to thank you for sitting down and taking a minute to
read this. We would also like to thank California Institute of Technology, and
everyone who organized and participated in the Computing Beyond Silicon Valley
Summer School for the wonderful opportunity to learn and to expand our knowledge
far beyond our reach.

References

1. Adleman, Leonard. "Molecular computation of solutions to combinatorial
problems." Science. 226 (1994): 1021--1024.

2. Adelman, Leonard, et al. “Solutions of 20-Variable 3-SAT Problem on a DNA
Computer.” Science. 296(2002): 499--502.

3. Benenson, Yaakov, et al. “An autonomous molecular computer for logical control
of gene expression.” Nature. 429(2004): 423—428.

4. Benenson, Yaakov, et al. “Programmable and autonomous computing machine
made of biomolecules.” Nature. 414(2001): 430—434.

5. Campbell, Neil A., Jane B. Reece, and Lawrence G. Mitchell. Biology, 5th
edition. Menlo Park: Benjamin Cummings, 1999.

6. Condon, Anne. “Automata make antisense.” Nature. News and Views 2004,
429.6990(2004): 351—352.

7. Karp, R, et al. “Error-resilient DNA computation”. Random Structure Algorithms.
15(1999): 450-466.

8. Lauria, Mario, Kaustubh Bhalerao, Muthu M. Pugalanthiran, and Bo Yuan.
"Building blocks of a biochemical CPU based on DNA transcription logic." 3rd
Workshop on Non-Silicon Computation (NSC-3), Munich, June 2004.

9. Lipton, C. et al. “DNA Based Computers II” DIMACS. 44(1999): 163—170.

10. Lipton, R. “Using DNA to Solve NP-Complete Problems.” Science. 268(1995):
542--545.

11. Liu, Q, et al. “DNA computing on surfaces.” Nature. 403(2000): 175.

12. Lloyd et al. “DNA computing on a chip.” Nature. 403(2000): 143--144.

13. Roweis, Sam, et al. “A Sticker Model for DNA Computation.” Journal of
Computational Biology 5.4 (1998): 615--629

14. Tan, W, et al. “Molecular beacons for DNA biosensors with micrometer to
submicrometer dimensions.” Analitical Biochem. 283.1(2000):56--63.

