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Abstract 

 In this paper, we will look at DNA computing, in particular at different ways that 
branching can be done in the sticker model (Roweis et. al. 1996) and the solutions to the 
NP complete problems. We will refer to control structures that are used in programming 
languages, looping and “if else” statements, as branching. There are five sections to this 
paper.  

 The first section will describe the process of DNA transcription then suggest a 
way that branching can be implemented into this process through the use of an OR gate. 
The section will continue to discuss the pros and cons of this idea. 

 The second section will look at a series of approaches to DNA computing and 
how branching is implemented or could be implemented in them.  

 The third section will briefly review state automata then go on to explaining a 
recent success in DNA computing ─ “The smart drug” experiment, its conclusions and 
implications for branching in DNA computing. It will look at a possible combination of 
the “smart” drug and the sticker models. In conclusion, pluses along with the minuses of 
this combination will be explored.  

 The fourth section will continue to look at expanding the DNA Sticker Based 
model of computation to include looping and if - then branching instructions without any 
outside intervention.  Unfortunately in the process of adding these capabilities to the 
model, it gets complicated and very likely impractical.  However the model is still 
valuable from a theoretical standpoint as an example of the computational power of 
DNA.  



 The last section of the paper will give an overview of some basic concepts which 
are the key to understanding why it is so important to find new ways of building 
computers, define what it means for a problem to be NP-com(plete), then describe the 
SAT problem which belongs to NP-com class of problems. Further this section will 
present the Cook’s theorem which proofs SAT problem to be an example of NP-com 
problem and mention some examples of NP-com problems.  The common features 
between branching and NP-com problems will be pointed out along with a few examples 
of computations on DNA computer which are presently possible. In the end, the weak 
points of computing NP-com problems on DNA computers will be briefly discussed. At 
the end of the paper some common conclusions will be stated. 

 

Introduction 

 In this paper, we would like to take a look at DNA computing, in particular at 
different ways that branching can be done in the sticker model (Roweis et. al. 1996) and 
the solutions to the NP complete problems. We will refer to control structures that are 
used in programming languages, looping and “if else” statements, as branching. There are 
five sections to this paper.  

 There are many ways in which branching can be done. We have listed and 
described a number of them: transcriptional logic branching, sticker model branching, 
“smart” drug model branching, CPU branching incorporated into the sticker model, and 
branching in the solutions to the SAT problems. 

 Branching can be viewed as anything that supports different path taking, sort of a 
fork in the road where one can make a decision about which route to follow. Thus any of 
the control structures can be viewed as branching ones. An OR gate or a FOR loop that 
many of us who are familiar with programming know well, are control structures and 
thus have rudimentary branching. Branching exists in the decision trees and a path that a 
binary algorithm takes. Branching is when a doctor diagnoses a patient and decides on 
whether s/he is sick and what drug if any to prescribe. Branching is a world in its own. 
One can say that algorithm analysis and logic heavily relies on branching.  

 Another no less wonderful and magnificent world of its own is cellular biology 
and in particular, DNA. DNA is a code that the nature has came up with through trial and 
error way before any human being was capable of thinking of programming something, 
or even before Homo Sapiens exited. 

 The sections of this paper take you through all or most other above. We hope that 
you find this paper an interesting read.  

 



Branching in DNA Transcription 

By Stephanie Lee 

Introduction 
 

DNA has a lot of unique but 
simple properties which allow it to be 
easily programmable and also easy to 
use in experiments. In this part of the 
paper some of these properties will be 
explored and used to expand the 
capabilities of the physical limits of 
scientific experimentation by attempting 
to introduce branching to the process of 
DNA transcription. 
 

DNA and RNA basics 
 

 DNA is structured so that each 
piece is a sequence of DNA nucleotides, 
each of which is composed of a 
deoxyribose sugar, a phosphate, and a 
nitrogenous base. There are four bases in 
DNA: adenine (A), thymine (T), guanine 
(G), and cytosine (C). What allows for 
such variation in DNA is the length of 
the strands and the sequence of these 
nucleotides. The sugar and phosphate are 
the same in every nucleotide and the 
sugar attaches to the phosphate in the 
next nucleotide in such a way that 
together, the sugars and phosphates of 
the nucleotides create what is known as 
a sugar-phosphate backbone. This 
uniformity allows for DNA to assemble 
with any sequence of DNA nucleotides 
to form a strand, and consequently, a 
DNA sequence is usually noted by the 
sequence of the bases. One important 
property of these bases is their specific 
base pairing – the fact that that each base 
is only complementary with one of the 
other bases. Adenine and guanine are 
both purines, meaning that they both 
have two organic rings. Thymine and 

cytosine are both pyrimidines, meaning 
they each have one organic ring. To keep 
the width of double stranded DNA 
consistent, each purine can only bind 
with a pyrimidine. Two purines would 
make the width too large and two 
pyrimidines would make the width too 
small. In addition, the structure of each 
base only allows it to form two or three 
hydrogen bonds. Adenine and theymine 
can only form two while guanine and 
cytosine can form three. Therefore, 
adenine, with two organic rings, can 
only bind with thymine, which has one 
organic ring. Similarly, guanine, with 
two organic rings, can only bind with 
cytosine, which has one organic ring. 
The simple but specific structure of 
DNA allows each base to only have one 
other base with which it can pair. 
 RNA has a very similar structure 
to DNA. One o f the main differences is 
that its sugar is ribose instead of 
deoxyrisbose. However, RNA is still 
composed of sequences of various 
nucleotides. Another difference between 
DNA and RNA is in the bases. RNA has 
the base uracil (U) instead of thymine 
(T). Conveniently, uracil also binds to 
adenine, so there is no difference in 
which bases are compatible. 
 

The Process of DNA Transcription 
 
 DNA transcription is a process 
which results in the synthesis of RNA. 
There are three stages: initiation, 
elongation, and termination. 
 When a strand of DNA is aligned 
in the 5’ to 3’ direction, the beginning of 
the sequence, about the first 100 
nucleotides on the 5’ end, is called the 



promoter sequence. When the promoter 
finds the complementary sequence on 
another strand of DNA going in the 3’ to 
5’ direction, the complementary 
nucleotides at each position in the two 
strands will bind. With DNA 
transcription, this promoter sequence 
starts with what is called the “TATA 
box” because it is usually made entirely, 
or at least mostly, of thymine (T) and 
adenine (A) nucleotides, which means 
that the complement to the promoter, 
which would be found on the 
complementary DNA strand, is also 
made up entirely or mostly of thymine 
and adenine as well. 
 Subsequently, certain proteins 
called transcription factors bind to the 
promoter, including one which 
recognizes the “TATA box.” After the 
proper transcription factors are bound to 
the promoter, RNA polymerase, the key 
enzyme in DNA transcription, binds as 
well. Once the RNA polymerase binds, it 
unwinds the two strands of DNA, and 
using the one in the 3’ to 5’ direction as 
the template strand, gets the RNA 
nucleotides and base pairs them to the 
template strand. About 10 to 20 DNA 
bases are exposed at a time, and the 
DNA transcription process occurs at a 
rate of about 60 nucleotides per second.5 

 Thus the expression is turned on, 
meaning the following DNA is read and 
expressed as output, in the form of RNA. 
The specific output is based on the 
specific sequence of DNA nucleotides. 
This elongation phase continues as the 
RNA polymerase continues along the 
DNA until it reaches the terminator. 
 When the RNA polymerase 
encounters the terminator, the 
termination phase begins. The 
transcription of the specific DNA 
sequence – that is the RNA sequence 
AAUAAA – functions as the actual 

termination signal, prompting the 
enzyme to cut the RNA 10-35 
nucleotides later. A temporary double 
helix hairpin loop in the RNA forms and 
eventually the stress this causes in the 
RNA polymerase enzyme results in a cut 
in the RNA strand and the termination of 
the DNA transcription process. 

The rate of DNA transcription is 
controlled by the concentrations of the 
transcription factors and RNA 
polymerase, allowing for easy regulation 
of the expression of output. The 
concentration of a specific output is 
directly related to the concentration of 
the corresponding transcription factors 
since they are necessary for the 
instruction resulting in that output to be 
read. In addition, oftentimes, the 
concentration of a specific output is also 
related to the repression of the output, 
allowing for self-regulation. Once the 
proper concentration of the output is 
reached, there is enough of that 
instruction’s repressor to prevent that 
output from being promoted, and the 
instruction is essentially “turned off.” 
 

Programming DNA Transcription 
 
 The sequence of the nucleotides 
in the RNA strand resulting from DNA 
transcription is directly related to the 
DNA sequence which is read. Thus, the 
input can easily be programmed to 
perform a specific output. With modern 
technology, it is fairly easy to control the 
sequence of nucleotides in DNA, which 
therefore determines the sequence in 
both the complementary strand of DNA 
and the output strand of RNA. 
 

Definition of Branching 
 
 Branching allows for conditional 
if-else statements to be used. If the 



condition is true, then one instruction is 
executed, but if the condition is false, 
then a different instruction is executed. 
The program then continues, regardless 
of which instruction was followed. The 
pseudo code looks like this: 
 { 
  if (condition) 
   {output 1}; 
  else 
   {output 2}; 
 } 
 continuation … 
The continuation is important because it 
makes sure that the program does not die 
after the if-else statement in both cases – 
the case that the statement is true (the if 
case) and the case that the statement is 
not true (the else case). 
 

Implementing Branching in DNA 
Transcription 

 
 Branching can be implemented in 
DNA transcription using an OR gate,8 
which would allow for the continuation 
whether or not the condition is found to 
be true. If the condition is true, a specific 
transcription factor, 1a, is present, and 
will bind to the promoter region of the 
strands of DNA for which the condition 
is true. RNA polymerase will then bind 
to the promoter and the output indicating 
that the condition is true will 
subsequently be expressed. But the DNA 
sequence launching the construction of 
the transcription factor for the second 
instruction, 2, would also be executed. 
The promoter regions for those strands 
where the condition is false will have an 
affinity for a different transcription 
factor, 1b. This will result in a different 
output, indicating that the condition is 
false, but the same DNA sequence 
ordering the construction of 2 would also 
be present. The second instruction will 

be read if the condition is true and if it is 
false, allowing for the essential 
continuation. 
 

Pros and Cons 
 

 One of the pros of this process is 
that it is easy to program both the output 
and the speed. The output is controlled 
by the DNA sequences, which can easily 
be customized with today’s technology, 
and the speed can be controlled by the 
concentrations of the transcription 
factors and the RNA polymerase. It is 
also easy to track the progress by taking 
a sample and approximating the 
concentrations of each of the outputs. 
Another important benefit of this process 
is that it does not require assistance at 
every step [from a robot], which some 
DNA experiments such as the sticker 
model do. Since the basic if-else 
statement has been explain, the idea can 
also be expanded to implement if-else if 
statements as well. 
 One of the drawbacks of this 
process is that it does not allow for 
parallelism. In addition, it is somewhat 
inefficient and in reality would probably 
be fairly slow. 
 

Conclusion 
 

 The properties of DNA allow it 
to be used in a lot of different 
applications, and this section of the 
paper has explored a new one of these – 
branching in the process of DNA 
transcription. The rest of this paper will 
explore further into the new possibilities 
DNA presents, including looking further 
into the possibility branching with DNA. 
 



Figure 1. 

 
This figure gives a visual representation of the basic setup of DNA transcription. After the proper 
transcription factors have bound to the promoter, the enzyme RNA polymerase (RNAP) binds to the 
promoter region of the DNA as well. The expression is then turned on and RNAP proceeds until it 
reaches the terminator, shortly after which the process terminates. 
 

Figure 2. 

 
This figure demonstrates the OR gate which allows for the implementation of branching in DNA 
transcription. If the condition is true for a sample of DNA, then a specific transcription factor will be 
present, and a specific programmable output will be expressed, as well as the transcription factor for 
the next instruction, allowing for continuation. If the condition is false, a different transcription factor 
will be present and a different programmable output will be expressed in addition to the transcription 
factor for the next instruction. Since the transcription factor for the next instruction is present 
regardless of whether or not the condition is true, continuation is possible. 



Branching using existing instructions in the Sticker model of DNA computation 
Bethany Andres-Beck 

The sticker model (Roweis et. 
al. 1996) performs computation by 
manipulating two types of single 
stranded DNA: memory strands and 
complementary stickers.  The stickers 
will adhere to exactly one position on 
the memory strand, representing one 
bit of data. (See Figure 1.) 
 

Many memory strands are 
acted on in parallel, which provides the 
power of DNA computation.  A single 
vial can have one of four operations 
performed on it.  Set adds a 
complementary sticker for a bit, setting 
it to one, clear eliminates a 
complementary sticker, setting that bit 
to zero, separate divides the strands 
into two vials based on a condition, 
and combine recombines tow vials that 
had been separated. (See Figure 2.) 
 

Using these existing 
commands, branching is already 
possible.  We take branch instructions 
to be in the form 
“IF…THEN…ELSE”, where IF is the 
condition, THEN is to be performed on 
those strands where the condition is 
true and ELSE on those where it is 
false.  To perform a branch operation 
based on a condition separated the 
DNA by that condition.  On the vial for 
which the condition is true, perform 
the THEN instructions.  On the other 
perform the ELSE instructions.  Then 
recombine them.  To test for more 
complex conditions, multiple separates 
may be performed and the strands that 
fail combined into an ELSE vial.  
Since an instruction set can always be 
empty, this covers all branch 
instructions. 

To perform looping, we need 
the ability to test for a condition 
without disrupting the DNA.  One way 

of doing this is to use fluorescent 
markers.  These are single stranded 
complementary markers which will 
adhere if the bit they complement to is 
zero and won’t if it is one.  After 
adding them careful measures must be 
taken to assure that non-adhered 
fluorescents remain.   

These have several advantages.  
First, they can be detected by a robotic 
assistant, eliminating the need for 
human interaction or lengthy testing 
procedures to establish the presence of 
strands that fulfill a condition.  Second, 
they are reversible.  Clearing the bit 
they are complementary to will clear 
them.  Third, acceptance conditions are 
variable, and a level of fluorescents 
that constitutes a “true” can be set 
according to need and the level of 
experimental error.  Finally, the robotic 
assistant can detect different types of 
fluorescence, allowing for multiple 
markers to be present at once and 
enabling nested looping. 

We will take loops to be in the 
form “LOOP WHILE…END LOOP”.  
When it reaches the END LOOP 
instruction, the robotic assistant 
performs a separate based of the loop 
condition, adds a fluorescence marker 
to the tube that would fulfill that 
condition.  It must be a positive test; 
that is, it must test for the presences of 
the marker not the absence, since the 
absence could also indicate an absence 
of strands and would lead to operations 
being performed on an empty vial.  
This can easily be accomplished in 
cases where the condition is a positive 
by performing a clear operation on a 
bit and adding a marker 
complementary to that bit.  If the 
WHILE condition is true, the robotic 
assistant goes through the loop 
instructions again with that vial.  If it is 



false, it recombines the vials and 
continues on to the remainder of the 
instruction set. 

This method does have some 
problems.  First, it relies on 
intervention from outside the model by 
the robotic assistant.  This complicates 
the model, adds additional room for 
error and is less desirable than a fully 
contained model.  The second is the 
variable levels of fluorescence.  
Experimental error is likely to mean 
there will always be some fluorescence 
present, but there may be times we 
wish to loop if there is a single strand 
present that fulfils the condition.  We 

sacrifice that ability when we use this 
method of loops. 

Finally, both the branching and 
the looping described here are slow.  
They involve separate operations, 
which are difficult, although not 
impossible to perform accurately 
(Roweis et. al. 1996).  This is a 
particular disadvantage of the sticker 
model, but branching and looping 
operations increase the complexity and 
use more of these slower operations.  
However, this jump in complexity also 
allows for easier mapping of 
conventional algorithms on to the 
massively parallel structure of DNA. 

 
 
 
 
 

Figure 1 
 

 



Figure 2 

 

 
 
 



Incorporating branching from the “Smart” drug6 model with the Sticker model 

by Vera Bespamiatnykh (Bereg) 

Introduction 

 The basic idea of this section is 
to use the “if else” statements from the 
“smart” drug model with stickers 
instead of drugs. This way some of the 
robotic operations from the sticker 
model may be eliminated and it might 
even be possible to consider a model 
where no robotic intervention is 
necessary. This is a very simple and 
yet powerful idea, which in the end 
might require less than or equal to the 
original sticker model computation 
time per a given problem. Thus the 
objective is to get rid of as many 
mechanical operations proposed in the 
sticker model as possible, while trying 
to ensure that the advantages of the 
sticker model are preserved. 

 

 In the heart of the “smart” drug 
model is the finite state automaton, a 
concept very familiar to a computer 
scientist. Automata are devices that 
convert information from one form 
into another according to a definite 
procedure. Thus they have states, one 
of which is marked as an initial state, 
some terminating/accepting states and 
rules that have a starting and a 
destination states, plus an action that 
occurs when this rule is being 
executed. 

 

This example illustrates a rule, which 
can be interpreted as “when we go 
from state zero to state one, append 
letter ‘b’ to our string of characters 
(which is initially zero)”. Here is a 
graph representation of an automaton 
from which this rule could be inferred: 

 

 

 

This is a machine that accepts strings 
over an alphabet {a,b} that are in its 
language L. Language L, in this case, 
has a special feature, all its words can 
contain only a zero or an even number 
of b’s. At any given moment when 
machine is running, it can be in one of 
its finite number of internal states. The 
computation terminates on processing 
the last string (input) symbol. An 
automaton accepts a string if it 
terminates in an accepting final state.  

 

 The programmable and 
autonomous computing machine that 
Benenson et all did used biomolecules 
as its hardware and software4. In 
particular, the hardware consisted of a 
restriction nuclease and ligase, whereas 
the software and input were encoded 



by the double-stranded DNA (ds 
DNA). The programming part 
amounted to choosing appropriate 
software molecules. Once the solutions 
with these components were mixed the 
automaton started to processes the 
input molecule via a sequence of 
restriction, hybridazation and ligation 
cycles. In the end, a detectable output 
molecule that encoded the automaton’s 
final state, and thus the computation 
result was produced.   

 This was the concept that 
Benson and his colleges have tested 
out in the laboratory with florescent 
light as output of the computation. 
However, later on they have thought of 
an even more interesting idea: “local 
diagnosis and drug administration”, 
that is the diagnosis of sickness and 
drug administration (or its suppression) 
was transferred into the cell. Thus, 
they were still using an automaton, but 
its computation was viewed as a series 
of steps in a diagnosis of a sickness 
(prostate cancer), while its output was 
an action of administrating the drug or 
a drug suppressor. 

 

 In the “smart” drug model3, 
hardware and software were used just 
like in the previous automata 
experiment. First a FolkI cleaves the 
input molecule and exposes the sticky 
ends. Then transition molecules 
(double stranded DNA) try to bind to 
the input, if they can, then a 
hybridization occurs and a ligation 
follows. The FolkI binding and 
cleaving off yet another piece off the 
input molecule forms the next 
configuration. Thus, there is a series of 
“if-then” statements that gets 
evaluated. If they all evaluate to “true”, 
then the drug or an anti-drug will be 
released (depending on what the 
evaluation is supposed to signify, is the 

cell cancerous, or not?). Note that it is 
possible for the evaluation to get stuck 
at some intermediate step and never 
reach the release of the drug/anti-drug. 

 

 The following is a 
representation of the states that the 
final state automata had to go through 
in the “smart” drug experiment: 

 

 

Ellipses represent states. The blue is 
the initial state. The green states 
represent “true” states, the red states 
represent the “false” states (evaluation 
of the “if” statement). The light green 
state is where the drug or the drug 
repressor is being released. 

 

 The design of this automaton 
incorporates the idea of molecular 
Turing machines. Therefore programs 
that are being run on the conventional 
computers are in theory computable by 
the drug model. The “smart” drug 
model has “if-else” statements and thus 
branching is possible. Another thing 
that captures the imagination is that 
there was no need for any robotic 
intervention, and the computation was 
done in parallel. The timing was 
reasonable and this has already been 
tested out in the laboratory (as opposed 
to the sticker model). Unfortunately, 
for the “smart” drug model it has been 
implemented in vitro and has not been 
tried in vivo yet. However this should 
not affect the sticker model as it was 
meant to be used in vitro anyway. It is 
true that the sticker model uses no 
costly-to-manufacture enzymes, 



however, in the “drug” model they are 
only used as hardware and thus are 
reusable. 

 

 Here is how the two models 
can be combined: we use stickers and 
anti-stickers (ie those that peel a 
sticker off the memory strand) instead 
of the drug generating single stranded 
molecules. Therefore, in the test tube 
we would have our memory strand 
from the sticker model and the final 
state automata from the drug model 
with its input, hardware and software. 
Thus we need to manufacture the 
appropriate single stranded DNA, 
which will be used as the input that 
would fold on itself. It should have its 
ends complimentary to one another, so 
that they would be able to bind easily 
leaving the sticker/anti-sticker in a 
hairpin loop (input molecule), and put 
in the “rules” (or software) that we 
would like to use in this computation.  

 

 

1. FolkI enzyme that cleaves the DNA 
molecule exposing the sticky ends 
(hardware) 

2. Transition molecules (software) 

3. Input molecule (with a hairpin in 
red—sticker/anti-sticker) 

4. Output (sticker/anti-sticker) 

 By manipulating the software 
and the input molecule’s code, I 
believe it is possible to model the 
behavior of random setting/unsetting 
of bits on given memory strands in the 
sticker model. It could be true that the 
separation/set bit/clear bit operations 
could be eliminated all together. This 
would mean that there would be no 
need for any intervention and the 
sticker model would become more 
feasible and robust. 

 

 It is easy to see how an SISD 
model could be done with the 
combination of sticker and “smart” 
drug models. In order to be able to do a 
MIMD, we need to answer the 
following question: How do we ensure 
that each sequence of “if-then” 
statements operates on its specific 
memory strand? Or better yet, do we 
need to ensure this?  It is conceivable 
that we might not need to ensure this at 
all, since we are trying to model 
random setting of bits. 

 

 In conclusion, it is true that 
there are other things that one needs to 
consider before finalizing this model 
and trying it out in the laboratory. For 
example: Would the environment that 
the “smart” drug model requires be 
suitable for the sticker model? Would 
the time taken by the robotic assistant 
to carry out the procedure, plus the 
time that it takes the chemical changes 
to take place (ie stickers binding to 
memory strand, and being peeled off 
by an anti-sticker) be equivalent to the 
time it takes to carry out the “if-else” 
statements in the vile/tube (ie the 
binding of FolkI, it cleaving off a piece 
of the code, until the sticker/anti-
sticker is released). It is conceivable 
that the time taken by the original 



sticker model to carry out the 
procedure would be larger than that of 
the combination of the two, as long as 
the sequence of the “if-then” 
statements is not too long (as when a 
lot of binding of the FolkI and it 
cleaving the code is required it might 
take a while).  

Conclusion 

 The length of the sequence 
allowed in the hairpin part of the input 
to the “smart” drug model, however, 
could be up to 21 bases. This is the 
length or a sticker that he sticker model 
proposed (around 20 nucleotides). 
Therefore this part seems to fit. Once 
the other concerns are taken care of, I 
believe that this branching model could 
be quite powerful. 



Further Expanding the Sticker-Based Model 

By Michael Lindmark 

 
Introduction 

 
In this section we continue to look at 
expanding the DNA Sticker Based 
model of computation to include 
looping and if - then branching 
instructions without any outside 
intervention.  Unfortunately in the 
process of adding these capabilities to 
the model, it gets complicated and very 
likely impractical.  However the model 
is still valuable from a theoretical 
standpoint as an example of the 
computational power of DNA. 
 

Changes to the standard model 
 
This extension makes a few changes to 
the strands used in the basic model.  To 
add branching we need to have 
selective operations, operations that are 
only applied to certain data.  This 
model accomplishes this by borrowing 
a few ideas from computers.  In effect, 
it introduces a program that is written 
in DNA and uses a DNA version of a 
program counter which keeps track of 
which instruction the program is 
currently running.  To implement this 
in DNA we introduce an instruction 
strand, a couple types of helper strands 
to run the program counter and a 
number of solid-bound DNA chambers 
like those used for the separate 
operation in the original model. 

 

The instruction strands consist of a 
head region followed by the string of 
instructions and end with the data 
connector.  The head region provides 
the start location of the program.  Each 
instruction is divided into two pieces, 
the instruction code and the operand 
code.  The instruction code specifies 
which operation is to be performed: 
set, clear, if, end-if, loop-if-not, and 
exit.  Notice that the separate and 
combine operations from the original 
model are no longer part of the 
operation set.  For all operations the 
operand code specifies on which bit 
the operation is performed. 
 
The DNA program counter is 
implemented by four types of strands 
working together.  The first of these is 
the start strand 
which enables 
the program to 
start by 
pointing to the first instruction.  It is 
simple, consisting of a sequence 
complementary to the head marker and 
the next sequence, which is the pointer 
signifying that the following 
instruction should be performed next. 
 
The next type of strand performs the 
primary function of the counter; 
incrementing.  The pc strands contain a 
toehold region, the complement of the 

next marker, the 
complement of one 
instruction, and the 
next2 marker.  The 
toehold is used by the 
anti-pc strands, which 
are complete 
complements of pc 
strands, for removing 

pc strands from the instruction strands.  



The next marker ensures that only the 
current instruction is covered by the 
complement instruction region.  The 
next2 marker signifies that the next 
instruction is ready, but will not allow 
another pc strand to bind, ensuring that 
the pointer is only incremented by one 

instruction regardless of the number of 
pc strands around. 
 
The last type 
of strand, the 
step strand, 
performs the 
simple 
operation of converting a next2 marker 
to a next marker.  It is part of the 
system that prevents more than one 
instruction from being covered every 
cycle. 
 
The key part of the operation 
selectivity 
that this 
model 
requires is 
achieved by 
using solid-
bound operation selectors.  The 
selectors work exactly like the 
separation tubes in the original model, 
except instead of being complements 
of the bit tags they complement the 
next marker and the instruction marker 
that it is selecting for. 
 
The only change that needs to be made 
to the data strand is the addition of the 

instruction-data connector at one end. 
 
 

The execution cycle 
 
To run a program on the extended 
model the instructions are first 
translated into an instruction strand.  
This strand is duplicated and then 
added to a mixture of randomly set 
data strands.  Once connected the start 
strands are added to initialize the 
program counter, and then the strands 
enter the compute cycle.  All of the 
strands pass through a series of 

operation selector chambers, each of 
which bind a specific instruction 
marker and the next tag from the pc 
strands.  After all of the strands are 
selected into different chambers they 
are sealed away and the selected 
operation is performed.  The series of 
operation chambers include those for 
the operations set bit 1, 2  ...  n, clear 
bit 1, 2 ... n, if bit 1, 2 ... n, loop-if-not 
bit 1, 2 … n, and exit.  After all of the 
individual operations have been 
performed the strands are released 
from the selectors and collected.  All 
of the various pc strands are then 
added to the collected strands, so that 
one strand binds to each instruction 
strand.  Then the rest of the pc strands 
are removed and step strands are 
added, preparing the instructions for 
the next cycle.  This two step process 
is required to ensure that the counter 
can only increment by one instruction 
every cycle.  After removal of the step 
strands the cycle is repeated.  The 
computation ends when an exit 
instruction is reached.  The strands that 
are sorted into the exit selector are 
removed from the system and the 
answer of the finished computation is 

ready.  One could easily extend the 
one exit instruction into an exit-true 
and an exit-false and then only the 
exit-true strands would need to be 
read.  Once the computation is 

completed all of the strands can then 
be sorted, separated, and all strands 



except the instruction strands can be 
reused in another computation. 
 

New extension if - then branching 
 
Branching is achieved by slightly 
altering the design of the if operation 
selectors and directing the selected 
strands into a separate sub cycle.  The 
if selector chambers contain specially 
weakened selectors that are not strong 
enough to bind an instruction strand 
without further help.  That help comes 
from other solid-bound DNA that 
complements the operand bit.  So 
instruction-data strands in which if bit 
one is the next instruction and bit one 
is clear are the only strands that bind in 
the if bit one selector.  All of these 
selected strands enter a sub-cycle to 
skip all instructions until the next end-
if bit one instruction.  This is done by 
adding an excess of all of the pc and 
step strands except for the pc strand 
that corresponds to end-if one 
operation.  The strands are then 
selected by the end-if selector chamber 
to guarantee that the counter has 
incremented enough.  Those strands 
which fail to bind remain in the sub-
cycle while the bound ones are 
returned to the main cycle.  The extra 
end-if operation is required to allow for 
nested branching by providing 
different return points based on the if 
condition. 
 

New extension looping 
 
For looping the model takes advantage 
of branching help instead of trying to 
address instructions individually.  The 
loop-if-not instructions are selected in 
the same way if selectors work, 
requiring a clear operand bit in 
addition to the next and instruction 
tags.  The selected strands are then 
cleared of pc strands by adding all of 
the anti-pc strands.  The toehold region 

allows the anti-pc strands to pull off 
the pc strands and leave the instruction 
strand with only the start strand bound.  
This idea of looping could be more 
intuitively called start-over-if-not.  
With a little extra branching help 
traditional looping can be attained.  
The following pseudo code 
demonstrates. 
 

if (stage1) { 
… 
if (NOT done) { 

loop; 
} 
… 
stage1 = false; 

} 
 

Complexity 
 

The extensions to the model and the 
added requirement of no outside 
intervention while the computation is 
running force this model to be much 
more complicated than the Sticker 
Based Computing Model on which it 
was based.  Assuming that n is the 
number of data bits the complexity in 
terms of unique strands is 16n + 7 = 
O(n).  The number of chambers as 
currently set up is 5n + C = O(n).  A 
majority of the complexity is in finding 
the correct design and binding lengths 
to get energy differences between the 
various strands correct. 
 

Problems and issues 
 
This model suffers from the same 
difficulties as the original Sticker 
Model.  There is a tradeoff between the 
error rates and the compute cycle 
speed.  The time consuming selecting 
process and lost strands are the major 
drawbacks.  Possible solutions may 
include using lots of duplicate strands, 
synthetic DNA backbones or use of 
metal nano-crystals. 



Exploring branching in SAT problems 

by Wojciech Makowiecki 

Introduction: 
 
The most important question in 
Computer Science still lacks the 
answers. 
Does P equal NP ? Nobody knows, 
though most experts in theory of 
computation suppose it does not. If this 
is the case and we can not find better 
algorithms for some extremely crucial 
problems, we need to find a different 
approach. The speed of processors 
doubles twice in 18 months, but it is 
not enough when we take into 
consideration NP-complete problems. 
Even 1000 times faster computers will 
not let us solve big enough instances of 
problems that could be useful in 
practice. As Adleman has shown first 
in 1994 and then in 2002*(1), it is 
possible to solve complex problems 
using a DNA computer.  
 

Definition: NP-complete problem 
 
NP ("non-deterministic polynomial-
time") is the set of decision problems 
solvable in polynomial time on a non-
deterministic Turing machine. 
 
NP-com is the complexity class of 
decision problems for which answers 
can be checked for correctness, given a 
certificate by an algorithm whose run 
time is polynomial in the size of the 
input (that is, it is NP) and no other NP 
problem is more than a polynomial 
factor harder. 
 
A decision problem C is NP-complete 
if it is in NP, and if every other 
problem in NP is reducible to it. 

Description of SAT problem 
 
The Boolean satisfiability problem 
(SAT) is a decision problem.  

An instance of the problem is defined 
by a Boolean expression written using 
only AND, OR, NOT variables, and 
parentheses.  
The question is: given the expression, 
is there some assignment of TRUE and 
FALSE values to the variables that will 
make the entire expression true? 
 
Example of SAT problem: 
 
E = (x1 or ~x2 or ~x3) and (x1 or x2 or 
x4) 
 
x1,... - variables 
~ - indicates “not” 
~x2,... - negations of variables 
or, and - boolean operators 
 

Cook’s theorem 
 
The language SAT of satisfiable 
Boolean formulas is NP-complete.  
 

Definition. polynomial-time Turing 
reduction (Cook reduction) 

Formally: 

A polynomial-time Turing reduction or 
Cook reduction of a decision problem 
L to a decision problem M is an oracle 
machine that has an oracle for M and 
can decide L in polynomial time. 

More intuitively: 

If such a reduction exists, than every 
algorithm for M immediately yields an 
algorithm for L, with only a modest 
(i.e. polynomial) slow-down. 
Some important examples of NP-com 

problems: 
 
- Boolean satisfiability problem (SAT) 
- Traveling salesman problem (TSP)  



- Hamiltonian cycle problem 
- Subgraph isomorphism problem 
- Vertex cover problem 
- Independent Set problem 
- Fifteen puzzle 
 

Branching and NP-com problems 
 
 
It has not been proved yet but is most 
probable that no general efficient 
solution exists for any NP-complete 
problem. 
Consider the SAT problem. There is no 
known algorithm that is faster than the 
exponential one. Each boolean variable 
can be assigned either “true” or 
“false”. If we have 1 variable we have 
only 2 possibilities. When we have 20 
variables number of possible 
assignments grows exponentially to 
220=1,048,576. One can check whether 
the first variable is “true” or “flase” 
and in each case an appropriate action 
is done. So it reflects the “if 
condition”. 
In classical approach the computer 
checks every possible combination one 
by one. The idea behind DNA 
computer is different. It works in 
parallel. 
It does not try every single possibility 
but tries criteria one by one, 
eliminating all false solutions that do 
not satisfy the criteria. It starts by the 
first criterion, deletes all solutions 
which do not suit the condition, then 
checks solutions whether or not they 
satisfy the next criterion and if they do 
not it deletes them as well, and so on 
until all criteria are checked. 
It is so powerful because every “if” 
acts on several variables at the same 
time. 
We can imagine every variable in the 
problem as a node in the tree and two 
values can take (either “true” or 
“false”) as branches. The Classical 
computation would rely on searching 

the tree using certain algorithm (like 
depth-first search). In contrast DNA 
computation will depend on checking 
few nodes and cutting out the 
appropriate branches, not checking 
nodes one by one. 
At the end of the procedure, only the 
solution(s) will survive. The last thing 
one needs to do is to read off the 
solution. 
 
Few different models that are being 
used are as follows: 
 

- Slightly modified Sticker model 2 
- Surface based approach to DNA 

computation 11  
- Fluorescent DNA computing 
(“molecular beacon”) 14 
 

 
Conclusions 

 
Even though DNA computers heavily 
utilize parallelism, they cannot solve 
any instances of NP-complete problem. 
They do not seem to be scalable 
enough to solve problems of practical 
importance. A theoretical forecast 
expanse for solving 50 variable SAT 
problem is high, as producing DNA 
sequences needed for this approach is 
expensive. In addition, it may be hard 
to design enough unique DNA strands, 
to encode all solutions that will not 
interfere with each other. The other 
important issue is the problem with 
data correction as error rate might get 
higher with attempts to solve larger 
problems. There exist however some 
strategies for handling error correction 
7,9. As many researchers including the 
inventor of DNA computing professor 
Len Adleman believe the future of 
DNA computing might be something 
else other than SAT problem solving, 
it is still interesting and very young 
field of study. 



Conclusion 

In this paper, we have tried to list and describe different ways that branching in DNA 
computing can be thought of and realized as. There are limitations and barriers that 
each one of the described here models has, however, they all have their advantages, 
benefits and purposes.  

In conclusion, we would like to thank you for sitting down and taking a minute to 
read this.  We would also like to thank California Institute of Technology, and 
everyone who organized and participated in the Computing Beyond Silicon Valley 
Summer School for the wonderful opportunity to learn and to expand our knowledge 
far beyond our reach. 
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