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ABSTRACT
We experiment with two types of clustering, K-medians and a
dimension-reduction technique known as Approximate
Distance Clustering, for classifying lung adenocarcinomas
into high-risk and low-risk groups according to gene
expression values from microarray data. We base this
classification on a reduced set of genes obtained by Nearest
Shrunken Mean [4] or a combination of a vraince-based
approach with hierarchical clustering.  
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1 INTRODUCTION
This abstract investigates clustering and dimension-reduction
techniques on two of the four CAMDA datasets of gene
expression values and survival times of patients with lung
adenocarcinomas.  We chose the Michigan [1] and Harvard [2]
data due to the reasonably large sample sizes (n = 86 and 84)
and lack of missing values. We use ADC maps [3] to project
the data into one or two dimensions so we can use very simple
clustering techniques, then follow this with Nearest Shrunken
Mean [4] to reduce the number of genes used to predict the
clusters.  We contrast this with more classical techniques of
variance ratios and hierarchical clustering.

2 METHODS
K-medians Clustering

This standard classical unsupervised clustering method
selects K points to be cluster centers and calculates the quality
of the clustering as the total distance of data points to their
cluster centers. In this paper, we use K=2 so it is possible to
find the optimal clustering in a reasonable time.

Approximate Distance Clustering  (ADC) [3]

Approximate Distance Clustering is a method that reduces the
dimensionality of data calculating the distances from data
points to subsets of the data points called witness sets. It i s
defined as follows:

   Let X be a collection of data in Rn

   Define D1, D2, …, Dm to be subsets of X of sizes k1, k2, …, km

   The associated ADC map, f(D1, D2, …, Dm) : Rn ‡ Rd maps X to
(y1, y2, …, ym), where yi = min{ || xj – x || : xj e Di}

A good witness set is a small set of points that produces a
mapping that preserves inter-cluster distances. In this abstract,
we look at the simplest cases of ADC projection on the
microarray data: the case where the number of dimensions we
project to is 1 or 2, and the size of the witness set is 1.  Note
that ADC does not in itself produce a clustering; the resulting
points in 1 or 2 dimensions must still be classified or
clustered using some method that works for low-dimensional
data. In this paper, we use the following criterion:

Compute the Kaplan-Meier survival curves and the p-value
from the log-rank test, then use the following W-criterion:

w = 4000 * a + 5500 * b + 450 * c + 50 * d

where

a  = 0 if the size of smaller group >= n /8,

    = 1 otherwise;

b is the p-value

c is the difference between the final survival rates of the

    low-risk and high-risk groups

d is  the high-risk group’s final survival rate



Minimal Variance Ratio (MVR) Gene Reduction

Our goal is to find good clusters based on a reduced set of
genes, selected using Minimal Variance Ratio or Nearest
Shrunken Mean. Either of these methods may be followed by a
hierarchical clustering of genes to eliminate those with similar
expression patterns. The variance ratio is the sum of the
within-cluster variances divided by the total variance of
expression values for that gene. Genes with large variance
ratios are thought to contribute less to the cluster definitions
and are eliminated.

Nearest Shrunken Mean (NSM) Gene Reduction [4]

NSM eliminates genes with cluster mean close to the overall
mean. Let:

xi j be the expression of gene i of sample j

mik be the mean expression of gene i in class k

 xi be the mean of gene i

n be the sample size

K be the number of clusters

nk be the size of cluster k

si = (1/(n-K)) SkSjŒCk(xij-mik)
2

s0 be the median of the si

Mk = sqrt(1/nk+1/n)

dik = (mik – xi) / (mk*(si+s0)), so

mik  =  xi  + dik * mk*(si+s0)

In this expression, dik can be reduced by D in absolute value

or replaced by zero if its absolute value is smaller than D. If i t
is replaced by zero, the cluster mean becomes the overall mean;
if this happens for all clusters, the gene can be eliminated.

One set of experiments involved using one or two dimensional
ADC clustering with a witness set of size one, followed by

NSM to obtain a set of genes of the desired size.  The w
measure above was used to select the witness and the cutoff
point between the two clusters. In the case of two dimensional
ADC clustering we averaged the values of the distances along
the two axes to determine whether a point was below the cutoff.
We also experimented with Survival-Time Cutoff Clustering
(STCC), sorting the patients according to survival time and
splitting them  50-50 or 60-40 into high risk – low risk
clusters to replicate the results of [1].

A second set of experiments involved starting with high-risk
and low-risk clusters of equal size according to survival times,
then using MVR to select a subset of genes to approximate
this clustering.  Some genes in this subset may have similar
expression profiles, so a form of hierarchical clustering was
used to obtain a desired number of clusters of these genes and
one gene was selected from each cluster.  This doubly reduced
gene set was then used (after normalizing each gene profile to
have vector length one) to obtain a K-medians clustering with
K=2 and the p-value from the log-rank test was calculated.

3 EXPERIMENTAL RESULTS
We experimented with these methods on the parts of the
Michigan [1] and Harvard [2] data that gave survival times
(both censored and uncensored).  The sample sizes were 84 for
the Harvard data and 86 for the Michigan data.

ADC on Harvard and Michigan data

Tables 1 and 2 give the results of using the W criterion to
select the best ADC witnesses and cutoffs, then reducing the
set of genes with NSM. In both cases the witness sets had size
one. The p-values were obtained from leave-one-out
crossvalidation on the reduced set of genes. Specifically, ADC
clusters were formed based on the reduced set of genes, leaving
out one patient, with the best ADC clustering being selected
according to the W criterion. The excluded patient was then
classified as high-risk or low-risk according to which cluster
mean was closer. The values for STCC  were obtained by
following the same procedure but substituting clusters formed
of the 50% or 60% highest risk patients for the ADC clusters.
Kaplan-Meier curves for the 40-gene cases are given on the last
page.

Table 1. Comparison of 1 and 2 dimensional ADC with STCC on Michigan data (n = 86)

p-value Low-risk/high-risk group sizeNumber of genes

1D ADC 2D ADC 50% STCC 60% STCC 1D ADC 2D ADC 50% STCC 60% STCC

7129 0.0028 0.0500 0.0086 0.0126 55/31 54/32 46/40 46/40

1000 0.0275 0.0009 0.0111 0.0158 59/27 60/26 45/41 43/43

500 0.0495 0.0048 0.0046 0.0089 52/34 57/29 47/39 45/41

200 0.0019 0.0033 0.0075 0.0056 58/28 58/28 47/39 48/38

100 0.0058 0.0194 0.0023 0.0048 57/29 55/31 49/37 46/40

50 0.0019 0.1442 0.0064 0.0048 58/28 42/44 50/36 47/39

40 0.0009 0.0268 0.0011 0.0048 58/28 44/42 50/36 47/39

30 0.0009 0.0356 0.0029 0.0067 58/28 43/43 51/35 46/40

20 0.0021 0.0189 0.0029 0.0090 57/29 42/44 51/35 46/40

10 0.0061 0.0618 0.0059 0.0049 56/30 37/49 50/36 47/39

5 0.0086 0.3559 0.0151 0.0024 58/28 41/45 49/37 49/47



Table 2. Comparison of 1 and 2 dimensional ADC with STCC on Harvard data (n = 84)

p-value Low-risk/high-risk group sizeNumber of genes

1D ADC 2D ADC 50% STCC 60% STCC 1D ADC 2D ADC 50% STCC 60% STCC

12600 0.0646 0.0046 0.1946 0.0741 25/59 24/60 39/45 41/43

1000 0.0124 0.0013 0.0381 0.0038 20/64 15/69 44/40 38/46

500 0.0023 0.0116 0.0021 0.0027 21/63 22/26 42/42 36/48

200 0.0121 0.0037 0.0007 0.0004 21/63 21/63 40/44 32/52

100 0.0201 0.0027 0.0213 0.0004 24/60 26/58 42/42 30/54

50 0.0332 0.0090 0.0120 0.0047 21/63 21/63 40/44 35/49

40 0.0332 0.0019 0.01 0.0033 21/63 27/57 40/44 35/49

30 0.0898 0.0010 0.0065 0.0098 28/56 26/58 39/45 35/49

20 0.0448 0.0039 0.0083 0.0015 27/55 26/58 38/46 34/50

10 0.0424 0.0011 0.0034 0.0001 22/62 20/64 37/47 33/51

5 0.0321 0.0032 0.0053 0.0196 20/64 25/59 36/48 28/56

Table 3 gives the top 40 genes found by one-dimensional
ADC from the Michigan data in rank order.

Validating ADC between Harvard and Michigan data

We validated the 100 genes we obtained from Michigan’s data
by finding the genes in the Harvard data that matched these
most closely and using those to run leave-one-out
crossvalidation on the Harvard data.  For the 1-dimensional
ADC, we found 88 matching genes in the Harvard data and
obtained a p-value of 0.0076 with cluster sizes of 25 and 59.
For the 2-dimensional ADC, we found 83 genes and obtained a
p-value of 0.4189 with cluster sizes of 24 and 60.

We then reversed this procedure with the 100 genes we
obtained from the Harvard data. For the 1-dimensional ADC,
we found 70 matching genes in the Michigan data and
obtained a p-value of 0.0495 with cluster sizes of 64 and 22.
For the 2-dimensional ADC, we found 65 genes and obtained a
p-value of 0.3560 with cluster sizes of 44 and 40.

MVR and K-medians

We used Minimal Variance Ratio to select 200 genes from the
Michigan and Harvard data based on an initial 50-50
clustering according to survival times, then used hierarchical
clustering to group these genes into 40 clusters.  We selected
one gene from each cluster and performed a K-medians
clustering of the patients into a high-risk and low-risk group
using these 30 genes after normalizing their expression
profiles so that the clusters wouldn’t be unduly influenced by
genes with high mean expression values.  On the Michigan
data this gave a p-value of 0.00002 with cluster sizes of 36 and

50, while on the Harvard data the p-value was 0.0417 with
cluster sizes of 47 and 37.  Kaplan-Meier curves for these are
given on the last page.

We used leave-one-out crossvalidation to verify this whole
procedure.  After clustering, the remaining patient was
classified as high-risk or low-risk according to which cluster
had the smaller average distance to that patient.  For the
Michigan data, this gave a p-value of 0.0219 and for the
Harvard data the p-value was 0.0696.

4 CONCLUSIONS
On the Michigan data ADC clustering obtained results very
comparable in terms of the p-values of the Kaplan-Meier
curves to those obtained by Beer et al. [1] using Cox model
regression, and we were able to reduce the set of genes further
than they reported. On the Harvard data we obtained results
slightly worse in terms of the p-values than those reported by
Bhattacharjee et al. [2], but we managed to significantly reduce
the set of genes. We also obtained reasonable crossvalidation
between the Harvard and Michigan data.

Our reduced sets of genes differed significantly from those
reported by Beer et al. [1]. This is perhaps not surprising since
our MVR and K-median experiments found that hierarchical
clustering of the genes could often significantly reduce the
number of genes without much of a decrease in the quality of
the clustering as measured by the p-value.  This probably
indicates that the data contained many genes with closely
related biological function.

Source code for our programs (in C++) and further results are
available from http://camda.cs.tufts.edu



Table 3: Top 40 genes in Michigan data in rank order from 1-D ADC.  (All probe set names end in _at)

Probe Set Symbol Name Probe Set Symbol Name

1 M63438_s IGKC immunoglobulin kappa
constant

21 X15940 RPL31 ribosomal protein L31

2 M34516 NULL 22 J03934_s DIA4 diaphorase (NADH/NADPH)
(cytochrome b-5 reductase)

3 X57809_s NULL 23 X91247 TXNRD1 thioredoxin reductase 1

4 M87789_s IGHG3 immunoglobulin heavy
constant gamma 3 (G3m
marker)

24 X69654 RPS26 ribosomal protein S26

5 L19437 TALDO1 transaldolase 1 25 M22382 HSPD1 heat shock 60kD protein 1
(chaperonin)

6 X01677_f GAPD glyceraldehyde-3-
phosphate dehydrogenase

26 X77584 TXN thioredoxin

7 L10678 PFN2 profilin 2 27 M26730_s UQCRB ubiquinol-cytochrome c
reductase binding protein

8 AFFX-
HUMGAPDH/M33
197_M

NULL 28 AFFX-
HUMGAPDH/M3
3197_5

NULL

9 M34516_r NULL 29 D49824_s HLA-B major histocompatibility
complex, class I, B

10 X67698 HE1 epididymal secretory
protein (19.5kD)

30 X62744 HLA-DMA major histocompatibility
complex, class II, DM alpha

11 M21388_r NULL 31 X15183 HSPCA heat shock 90kD protein 1,
alpha

12 X00274 HLA-DRA major histocompatibility
complex, class II, DR alpha

32 U09813 ATP5G3 ATP synthase, H+ transporting,
mitochondrial F0 complex,
subunit c (subunit 9) isoform
3

13 M13560_s CD74 CD74 antigen (invariant
polypeptide of major
histocompatibility
complex, class II antigen-
associated)

33 X56468 YWHAQ tyrosine 3-
monooxygenase/tryptophan 5-
monooxygenase activation
protein, theta polypeptide

14 M17886 RPLP1 ribosomal protein, large, P1 34 X13238 COX6C cytochrome c oxidase subunit
VIc

15 D49387 NULL 35 D14657 KIAA0101 KIAA0101 gene product

16 M37583 H2AFZ H2A histone family,
member Z

36 M22760 COX5A cytochrome c oxidase subunit
Va

17 X67951 PRDX1 peroxiredoxin 1 37 D00762 PSMA3 proteasome (prosome,
macropain) subunit, alpha
type, 3

18 X02152 LDHA lactate dehydrogenase A 38 J04823_rna1 COX8 cytochrome c oxidase subunit
VIII

19 D13630 KIAA0005 KIAA0005 gene product 39 X53331 MGP matrix Gla protein

20 D14874 ADM adrenomedullin 40 M24485_s GSTP1 glutathione S-transferase pi
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